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Abstract

Multi-view shape-from-silhouette systems are incredginged for analysing stones. This thesis presents
methods to estimate stone shape and to recognise indisthrads from their silhouettes.

Calibration of two image capture setups is investigatedstfa setup consisting of two mirrors and a cam-
era is introduced. Pose and camera internal parametersfareed from silhouettes alone. Second, the
configuration and calibration of a high throughput multimeaa setup is covered.

Multiple silhouette sets of a stone are merged into a singtebg inferring relative poses between sets.
This is achieved by adjusting pose parameters to maximis@egeical consistency specified by the epipolar
tangency constraint. Shape properties (such as volummes$istand elongation) are inferred more accurately
from the merged silhouette sets than from the original sitie sets.

Merging is used to recognise individual stones from pairsilbbuette sets captured on different occasions.
Merged sets with sufficient geometrical consistency aresdi@ad as matches (produced by the same stone),
whereas inconsistent sets are classified as mismatches.

Batch matching is determining the one-to-one corresparglertween two unordered batches of silhouette
sets of the same batch of stones. A probabilistic framewsnised to combine recognition by merging
(which is slow, but accurate) with the efficiency of compgtishape distribution-based dissimilarity val-
ues. Two unordered batches of 1200 six-view silhouette afaisicut gemstones are correctly matched in
approximately 68 seconds (using a 3.2 GHz Pentium 4 machine)

An experiment that compares silhouette-based shape éssimdth mechanical sieving demonstrates an
application using the developed methods. A batch of 494ajaris sieved 15 times. After each sieving,

silhouette sets are captured for sub-batches in each bitth Baatching is used to determine the 15 sieve
bins per stone. Better estimates of repeatability, andebeatiderstanding of the variability of the sieving

process is obtained than if only histograms (the naturgduudf sieving) were considered. Silhouette-based
sieve emulation is found to be more repeatable than mediasi@ving.
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Chapter 1

Introduction

1.1 Overview and Motivation

Silhouette images of a stone provide cues for (1) inferringperties of the imaging system, (2) inferring
properties of the 3D shape of the stone, and (3) recognisiagtone from previously stored silhouettes.
This thesis addresses these inference and recognitiofeprsb

Silhouette images are frequently used in computer visiguliggitions as a simple and robust means for
inferring the shape properties of 3D objects. For instatieyisual hullis the largest object consistent with
a set of silhouettes captured from known viewpoints. SHege-silhouette often involves using the visual
hull to approximate the 3D shape of the object that produedithouettes.

Since, under controlled conditions, foreground and bamkagg regions in an image can be distinguished us-
ing simple and reliable methods, shape-from-silhouetfagrhes have become popular in the geosciences
for measuring 3D size and shape properties (such as volluorgadion, and flatness) of individual stones
or other rigid particles Such information is useful for many purposes ranging fratue estimation of
gemstones to predicting the strength of concrete.

This thesis aims to extend the functionality of silhoudtssed particle analysis by developing and analysing
new algorithms that are based on recently-developed idethifield of computer vision. The application
of silhouette-based techniques to stones rather thanajesigects provides the useful constraint of rigidity:
the 3D shape of the imaged object is assumed not to vary ower ti

Multiple silhouette views of individual particles provid&ormation that will be used for different purposes:

1. inferring characteristics of the imaging system (cancafdoration),

*The termparticle is commonly used in the geosciences literature to referaioest, rock fragments, coarse aggregate, mineral
grains, pebbles, and so on.



2. inferring particle size and shape properties, and

3. recognising individual particles from their silhoustte

The following sections briefly overview these three topics.

1.1.1 Camera Calibration

When the imaging characteristics (such as the camera’$ lfrggth and principal point) and pose (position
and orientation) associated with silhouettes are knowam the silhouette set alibrated Once the values
of calibration parameters are known, it is possible to aeitee the 3D rays corresponding to 2D points on
the silhouette images in a common reference frame. Camébeat®n' is an important first step for both
the recognition and 3D shape analysis algorithms developtds thesis.

Traditionally, camera calibration has been achieved bgfisg the image locations of points with known
3D coordinates. Camera parameters are estimated by minintlse difference between observed image
points and those predicted by the parameterised camerd.mode

More recently, there has been interest in self-calibrafy 58]. Self-calibration solves the calibration
problem without using images of marker patterns whose 3Ddioates are known in advance; instead, the
images themselves are used (e.g., images of stones in ttextohthis thesis). Corresponding scene points
whose 3D coordinates are initially unknown are used to gamebusly compute both the 3D coordinates
and the camera parameters in a process known as bundlenagijitstThere has also been activity in self-
calibration using silhouettes instead of point correspoids. To render the problem tractable, some form
of additional information is incorporated, such as knowkedhat the silhouette set is a circular motion
sequence. In many approaches to calibration, an initialapimal solution is computed using a closed-
form solution. The solution is then refined using iteratiy@imisation. This is the approach taken for
calibrating the setups that are used in this work.

This thesis investigates the possibility of self-calibygtcamera setups for capturing multiple silhouette
views of stones. Two types of setups are used for capturihgusitte sets of particles: a setup consisting of
two mirrors and a single camera, and a setup consisting dipteusimultaneously triggered cameras (see
Figure 1.1).

The mirror setup provides a simple means for capturing sétte images of stones using only readily avail-
able equipment. Two mirrors are used to create a scene nimgdive views of an object. The five views
are captured in a single image. It will be shown that the siffites impose geometrical constraints that can
be used to calibrate each silhouette view.

TIn certain contexts, camera calibration may referaiiometriccamera calibration. In this thesis, camera calibratiomigtéd
to geometriccamera calibration: inferring camera poses and internairpeters.
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Figure 1.1 The two image capture setups considered in this thiegig, and examples of corresponding captured imghetom)
The two-mirror setugleft) provides a simple low cost means of capturing silhouette @estones, whereas the six-camera setup
(right) enables high throughput imaging.

The multi-camera setup is a high throughput alternativééonirror setup. It was constructed by a team of
engineers from the company that commissioned part of th& described in this thesis. The multi-camera
setup is calibrated using images of balls (spheres). Thefusal images aids two aspects of the calibration
procedure: (1) forming an initial parameter estimate, é&)dénforcing absolute scale. Since the distance
from the cameras to the ball is large with respect to the ladl, she Tomasi-Kanade [129] factorisation
method can be used to give a good initial estimate to theredililm parameters. Silhouette centres are used
as approximate point correspondences across multiplesvi€he calibration parameters are then iteratively
refined using geometrical constraints imposed by the sitielboundaries.

1.1.2 Size and Shape Properties

Information about particle size and shape is used in the gduosiries, mining, and the geological sciences.
The longest, intermediate, and shortest diameter of iddaliparticles are typically recorded, and properties
such as flatness, elongation, sphericity, or compactnesdeaived from the three diameter values. Manually
measuring the three diameter values is tedious, time-ooingy and error prone. Machine vision systems



that estimate shape properties from multiple silhouetgvsitherefore provide the potential for saving time
and removing the element of human error.

Particle size is also often one of the most important praggemf interest. Volume is usually the most
desirable measure of size [133], yet sizing of particlest®En historically carried out using sieves. Sieves
provide only a distribution of sizes of a batch of particlash{stogram), rather than individual per-particle
measurements. Machine vision systems can estimate pavtdlime as well as emulate sieving. Since
machine vision systems can consider one stone at a timeretiffshape properties can be measured for each
stone, allowing multi-dimensional distributions to beided for a batch of stones.

It is notthe goal of this thesis to analyse the shape of particlesreghect to any industrial or environmental
process, but rather to investigate algorithms and mettads\ill provide this means (and other related tools)
to particle shape analysts. These include geologistd, arigineers, as well as technicians and researchers
from the gem industries, mining, and the geological science

Shape measurements such as particle volume, elongatidigtimess are not the ultimate output of the
silhouette-based methods described in this thesis. Thesa set of measurements that are often useful
to particle shape analysts. Since these shape measurenersmmonly-used they are selected as one of
the means of quantifying the performance of the silhouedieed methods. For instance, the performance of
the new self-calibration methods is quantified in the terfrti®@accuracy with which these shape properties
can be estimated.

It is worth noting that in recent years, particle shape atalincreasingly require 3D shape models of par-
ticles (typically triangular mesh models) rather than ealwf shape properties (e.g., volume, elongation,
flatness) that summarise particle shape. The 3D shape mdgide used as input to simulations car-
ried out using a finite element analysis software packagenftance. Using 3D mesh models of particles
rather than (say) ellipsoids with the same moments up tor dwee provides the potential for more accurate
simulations.

1.1.3 Recognition

Although the computer vision literature contains an abuaadaof articles on image-based biometrics appli-
cations, such as recognising people from their faces orrimigs, individual particle recognition does not
appear to have received attention in academic literature.

This thesis introduces silhouette-based recognition dif’idual particles as a research and processing tool
for particle analysis. Recognition (or matching) systemescammonly used forerificationor identification

Identification and verification of stones from silhouettésge potentially useful for (1) verifying gemstone
origin, and (2) tag stone identification:



1. Gemstone origin verification. Verification is a potentially useful tool for high value pakes such
as uncut gemstones. A silhouette set of a stone can be caingéttea silhouette set on record to
confirm that the two silhouette sets correspond to the sapne st

2. Tag stone identification. Gemstone miners often ‘spike’ mines with gemstones of knovass (so-
calledtag stones The tag stones are retrieved after processing to audigtfermance of the recovery
process. Currently, tag stones are recovered by humans demtify them by their mass and by
manually comparing them with previously captured photphsa This is a time-consuming procedure.

The methods developed in this thesis are applicable to thildgms of gemstone origin verification and tag
stone identification. However, the main recognition tasfiragsed by this thesis is the one-to-one matching
of an unordered batch of stones captured on two separatsiogsa asquare assignmergroblem. The
problem is potentially more difficult than identification werification, since each af silhouette sets in the
first rurf must be matched to one of thesilhouette sets in the second run. The matching can be skbifi
ann x n permutation matrix in which each element is either one oo fiadicating match or mismatch), and
each row and each column sums to one. The nature of the batchingaproblem is illustrated in Figure 1.2.

The ability to match up silhouette sets of an unordered batattones across two runs (batch matching) is
potentially useful for several applications:

1. Batch matching can be used to measure the repeatabititycaracy of a stone classifier. The classifier
could be, for example, a mechanical classifier such as awsieioh classifies stones into different sieve
bins according to size, or a human classifier, such as a pedsorsorts gemstones into different piles
according to colour. (Piling the stones enables efficiertirapy since there are far fewer classes than
stones.) Stones are passed through the multi-camera dttuplass labels have been assigned. (To
keep a record of class labels for each silhouette set, iiestato pass the stones through the camera
setup in sub-batches of the same class label.) Batch mgtelilirdetermine the different class labels
that each stone has received after being classified on teutigzasions.

2. Batches of stones are used by various laboratories feargs purposes. The stones are often stored
in trays with one stone per compartment so that each stonbecaniquely identified. This means of
storage can become impractical for large batches of stafi@sdre than about 100 stones). Properties
of the individual stones (such as volume, density, or hasslhhmay be measured and recorded for the
individual stones at different times. With batch matchiaghinology, the stones need not be separately
stored as the matching process can be used to reconcilefonmation.

3. This thesis will demonstrate how to merge several sillieusets of the same particle into a single
large silhouette set in which all silhouettes are specifieel common reference frame. More accurate
estimates of the 3D particle shape can be made from the msagetan from any of the individual

*In this thesis, the termun is used to refer to a batch of silhouette sets in which onesétte set is captured for each stone.
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Figure 1.2 The batch matching problem: each six-view silhouetters#te first run(top row) must be matched to the corresponding
silhouette set in the second rdmottom row)using only the silhouette images and corresponding canaditzration information.
Coloured arrows show the desired unknown correspondemaes of silhouette sets generated by the same stone. Thiepro
is difficult because (1) the stones are ordered arbitraaihyl (2) the stones are oriented arbitrarily. The efficietttanatching
algorithm developed in this thesis rapidly estimates thesBBpe of a stone from its silhouettes to identify likely rhate Pairs of
silhouette sets that are geometrically consistent withderoduced by the same stone are then sought. This illigstrsihows a
small data set ofi = 4 stones; in practice, data sets will contain hundreds aiplysthousands of stones.



sets. Batch matching allows an unordered batch of stonespagsed through the multi-camera setup
several times so that merged silhouette sets can be formeddh stone. Passing unordered batches
of stones through the multi-camera setup is quicker thagipgsndividual stones through one at a
time.

1.2 Research Objectives

The principal objective of this thesis is to develop new &thms to solve the problems of self-calibration,
recognition, and particle shape analysis using multi-\sdhouette sets of particles.

A portion of the work presented in this thesis was carriedasugart of a project commissioned by a company
that wishes to remain anonymous. The nature of this compamgcific uses for the developed methods lie
outside the scope of this thesis. However, the methods amohbyeans applicable only to gemstones.
Data sets of uncut gemstones (in addition to garnets anelyraere used as test sets in this work as these
were made available by the commissioning company. Indeaayrof the methods developed here have
broader application scope than particle analysis, and eaapblied to other objects. Three-dimensional
shape reconstruction for multimedia content creation isxample of an application that will benefit from
some of the methods developed in this thesis. For cases ichwhé methods are applicable to general
objects, experiments and examples will therefore be gieerlbjects other than stones. Particle analysis,
however, is the unifying theme for the topics covered.

Within the topic ofshape and sizéhe aim is to develop algorithms for estimating propertied are com-
monly used by particle shape analysts. These methods drertdd be used in conjunction witialibration
andrecognitionmethods to quantify the accuracy and repeatability of systems.

Systems that compute the 3D shape of particles must tradiheffiesirable characteristics of accuracy,
throughput and affordability (in terms of monetary costhisTthesis investigates two multi-camera setups:
(1) a highly affordable setup that uses two mirrors to gemeenaultiple views, and (2) a high-throughput
system that uses six simultaneously triggered cameras. gdakis to develop separastelf-calibration
algorithms for the two setups.

A further goal within the topic otalibration is to demonstrate that multiple silhouette sets of a particl
can be merged into a single large silhouette set in whichilabsettes are specified in a common reference
frame.

The major objective within theecognitioncomponent of this thesis is to develop efficientmethod for
solving the batch matching problem (as illustrated in Fégli2). (In this thesis efficiency will always refer
to the speed of execution, as opposed to, for example, meefiiciency.) To achieve this objective, it is
useful to break it down into several components:



1. The aim of the first component is to determine, as effigfeamlpossible and preferably without error,
whether a pair of silhouette sets corresponds to the same &amatch) or not (a mismatch).

2. The aim of the second component is to develop a rapid mdademtifying candidate matches by
assigning a dissimilarity score to silhouette set pairs.

3. The aim of the third component is to combine the first two ponents to create an algorithm that
makes use of the accuracy of the first component and the efficief the second component to solve
the batch matching problem.

The final objective of this thesis is to demonstrate the usbkeaxalibration, recognition andshape analysis
tools by showing how they can be used together to solve aipahproblem: estimating the repeatability of
mechanical sieves and comparing the repeatability with@ima vision emulation of sieving.

1.3 Contributions

The most important novel components of this thesis are therfimg:

1. The analysis of viewing edges is introduced as an altemiat the visual hull for efficiently estimating
3D shape properties of stones. Viewing edge midpoints amodstrated to provide more accurate
estimates of 3D properties such as caliper diameter maasuts (longest, shortest and intermediate
diameters). The viewing edges are demonstrated to impasaeajdcal constraints from which the
upper and lower bounds of a stone’s longest and shortesetiascan be computed from its silhouette
set.

2. A novel, low cost mirror-based setup for capturing mugtipilhouette views is described, and algo-
rithms for self-calibration are developed. The method jgles an accessible and affordable method
for 3D shape reconstruction of stones. The method is notdahtio 3D reconstruction of stones and
has been applied to objects other than stones (e.g., toyal)intt can be used as a simple method for
creating 3D multimedia content for people who do not havessto expensive equipment.

3. Calibration of a simultaneously-triggered six-camegtup is achieved by combining two existing
approaches to calibration. Initial parameter estimatesdatermined using approximate point corre-
spondences and the Tomasi-Kanade method [129]. The ip#iameter estimates are then refined by
minimising a cost function based on the outer epipolar tatgyd 38].

4. A new pose optimisation method for merging several sii@usets of the same object into a large sil-
houette set is developed. The method allows one to generatdbararily large number of silhouettes
of an object in a common reference frame using an image aapaiup that generates a small number
of views. A merged silhouette set provides a more accurateeBbnstruction and tighter constraints
on 3D shape than any of the original silhouettes sets fronelnihiwas formed.
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5. The use of the residual error associated with a mergepaithouette sets is demonstrated to be an
effective indicator of whether the pair corresponds to tillwosiette sets of the same stone (a match)
or to two silhouette sets of two different stones (a mismjatch

6. An existing shape matching method [103] based on shabdifons is adapted to create a rapidly
computable method for assigning a measure of dissimiléétyveen two silhouette sets. A batch
matching algorithm is then developed to use both the ragidipputable dissimilarity measures and
the pose optimisation method, to match two runs of silheus¢ts of an unordered batch of stones.
The important feature of this batch matching algorithm sseifficiency: a test set of 1200 stones is
correctly matched across two runs in approximately 68 stxon a 3.2 GHz Pentium 4 machine.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows.

Chapter 2 provides a short historical overview of particle shape ysislin the geosciences. This is provided
because (1) computer vision researchers are unlikely tatdidr with the geosciences literature on this
topic, and (2) this presents a historical background of thekwhat this thesis extends by developing new
algorithms and methods. First, definitions of shape prasethat are of interest are covered, and some
examples of their uses are given to demonstrate that pagitpe analysis is a broad field with diverse
goals. Next, silhouette-based machine vision systemshinat been designed to measure particle shape
properties are covered.

Chapter 3 introduces background theory on the geometry of silhowsette that will be used to develop the
methods described in later chapters. The concepillobuette consistendg introduced and two methods
that will be used throughout the thesis are described: (Bwasilhouette-consistent estimate of 3D shape,
the viewing edge midpoint hull (VEMH), which will be used festimating 3D shape properties and as
a component of the matching process, and (2) an existingureea$ silhouette consistency based on the
epipolar tangency constraint that will be used for calibraind for matching.

Chapter 4 describes a novel low cost image capture setup based ondwe plirrors. The chapter describes
how the camera parameters associated with silhouette wkars object can be computed from the silhou-
ettes alone: there is no need for calibration markers. Simeenethod can be used to reconstruct the 3D
shape of a broader class of objects than stones, resultema@ngtrated using both stones and other objects.

Chapter 5 covers the geometric configuration and calibration of aigbughput alternative to the image
capture setup described in Chapter 4. Heuristics are intextl that are used to determine the positioning
of the cameras. A calibration routine based on silhouet@gas of a ball is described. Balls of known
dimension allow scale to be enforced, and ball images allova@proximation based on Tomasi-Kanade
factorisation method to be used for forming initial paragnetstimates.



Chapter 6 shows how silhouette sets of the same particle capturedfaratit poses can be merged into a

single large silhouette set by minimising the degree of getdoal inconsistency across the silhouettes. Re-
sults computed using both stones and other objects arenpedsd he method is applied to objects captured
with the mirror-based setup described in Chapter 4 as wéfieasix-camera setup described in Chapter 5.

Chapter 7 shows how the pose optimisation and associated error deddri the previous chapter is used for
matching omecognisingparticles from their silhouettes. Other measures of sitteuconsistency are cov-
ered. The methods are applied to data sets of stones capgingcthe mirror setup and the six-camera setup.

Chapter 8 develops a method of rapidly computing a measure of disaiityilbetween two silhouette sets.
The method is based on the shape distributions of Osada[#03], but is modified to improve efficiency in
the context of silhouette sets of stones. This includegyubie VEMH introduced in Chapter 3 as an estimate
of the 3D convex hull of the stone.

Chapter 9 describes a method for efficiently finding the one-to-oneaspondences between silhouette
sets from two runs of the same batch of stones. The methodsmaesof the efficiency of the matching
approach described in Chapter 8 together with the accurfatye slower method described in Chapter 7. A
probabilistic framework is used to achieve efficiency: &litkood ratio (indicating the likelihood of being
a match) is associated with each silhouette set pairingsadie two runs. Likelihood ratios are updated
using Bayes'’s rule as new information is added from the tesfilpose optimisations. A greedy algorithm is
shown to provide a tractable solution that produces extelisults in terms of running time and accuracy.

Chapter 10describes an experiment that makes use of the main ideal®pesén this thesis: batch match-
ing, estimating shape properties, and calibration. Thegx@nt estimates the repeatability of mechanical
sieving by determining which stones fall into which bins orultiple runs of sieving. Knowing the sieve
bins associated with each particle allows repeatabilitpe@stimated more accurately than if only the bin
counts were known for each run. The repeatability of the rapidal sieving process is compared with a
machine vision emulation in which sieve bin classificatiswomputed using silhouette sets.

Chapter 11 concludes the thesis by reviewing the main contributiorts ammmarising the work. Ideas for
future work are identified.
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Chapter 2

An Overview of Particle Shape Analysis

2.1 Introduction

This chapter provides a historical overview of particlepghand size analysis that is drawn mainly from the
geosciences literature. It is shown how interest has gravusing silhouette-based machine vision methods
to quantify particle shape properties. Initially, singiew systems were used, and more recently there has
been interest in multi-view systems.

The content of this chapter is not required for understanttie methods developed in this thesis. Readers
who are not interested in a historical overview may wish ip #is chapter, and continue reading Chapter 3
on page 25.

2.2 Quantifying Particle Shape

Particle shape analysts in a range of different fields (fangle, geomorphologists, civil engineers, process
engineers, hydrologists) are interested in summarisiegsthe and shape (sometimes termed ‘form’) of
particles using a small number of features.

Volumeis usually the preferred measure of size [133]. The voluma pérticle can be used to estimate
weight (if density is known), or to estimate density (if Wieidgs known). Size distributions play an important
role in determining particle packing and porosity chanasties in asphalt mixes [109]. In the gem industry,
individual particle volume is closely (and nonlinearly)ated to the monetary value of each gemstone.
Historically, sieving has been used to characterise tleedigributions of large batches of particles, because
of the high throughput that can be achieved.
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Although there are some differences in their precise dafirgt thelong, intermediate andshort diameters

of a particle are frequently used to summarise its shapeseTtieee diameters are sometimes referred to as
thea, b, andc diameters, respectively [70]. Oftenis defined as the longest diametarig termed simply
thediameterby computational geometerg)js the shortest diameter (termed thiglth by computational ge-
ometers), anthis the diameter measured in the direction that is perpetatituthe directions corresponding

to aandc [131]. Note that these diameters aaiper diametersin other words, they represent distances
between parallel plane pairs that are tangential to thécfarDifferent variations on the definitions include
measuring the caliper diameters along the principal domest(as determined by the inertia tensor) [4, 127],
and requiring the long diameter to be measured perpendituthe shortest diameter [71], or requiring the
short diameter to be measured perpendicular to the longaseter [41].

Thea, b, andc diameters are measured in various ways. Manual measureiehtde the use of a sliding
rod caliper [70], Vernier calipers [59], and a ruler [83]. tAmated methods include the use of 3D laser
scanning [71], X-ray tomography [82], and silhouette-lasechine vision [87].

The three diameter values are frequently used to providembionless quantifications of parti@engation
andflatness Two common formulations specify elongation as the ratipand flatness as the rati@ [6].

A measure of sphericity (the degree of compactness) is &iso derived from the three parameters. Krum-

bein’s commonly used definition [70] is
sphericity= ¢/ %: . (2.1)

Zingg'’s diagram [144] is a popular means for classifyingtiples into one of four shape categories and for
visualising the distribution of shape for a batch of paetic{see Figure 2.1). Zingg classified particles into
the classes oblate (disk-shaped), spherical (compaetiebl (triaxial) and prolate (rod-shaped), based on
the ratiosb/a and¢/b. For each particle, the-coordinate of its data point ia, and thex-coordinate is/b.
Using a threshold o0%/3, the data points that lie in the top left quadrant are obldiejower left are bladed,;
the upper right are spherical; and the lower right are peolefyperbolic contour lines can be plotted on the
standard chart so that sphericity values can be read off.

It is interesting to note Joshi and Bajcsy’s discussionHhiwithe field of linguistics) on the ways in which
humans interpret shape [66]. The terms ‘flat’, ‘elongataut] &ound’ are listed as some of the few non-
template-based terms that humans tend to use to describka@@s Joshi and Bajcsy’s ‘roundness’ refers
to what is termed ‘sphericity’ in the geosciences literatuPeople prefer template-based descriptions such
as ‘star-like’.
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Figure 2.1 Zingg's diagram [144] for classifying particle shapesifrthea, b, andc diameters.

2.3 A Range of Analyses of Particle Shape

To provide an indication of the wide range of subjects thakensse of measurements of individual particle

shape, this section provides a brief description of a fewhefdtudies described in the literature. In many
cases, it appears that these types of studies will benefitrinodern silhouette-based machine vision methods
for quantifying particle shape.

2.3.1 Ice-Rafted Pebbles

Hassler and Cowan [59] collected 331 pebbles from drilksitie the Antarctic Peninsula. The long, interme-
diate, and short axes were manually measured using Vealipecs. Together with other evidence, the shape
measurements were used to support the hypothesis thathlihkepdnad been transported as supraglacial de-
bris.

2.3.2 Alluvial Gravel

Lindsey and Shary [83] assessed alluvial gravel depositmmégsuring the long, intermediate and short
diameters of 150 pebbles from three locations along thehS@lattite River in Colorado. The measurements
were performed manually using a ruler. They show that thpgntn of equidimensional particles increases
downstream. The study aims to predict the downstream lifngfravel production (mining) and of post-
mining land uses.
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2.3.3 Gold Grains

Wierchowiec [136] uses Zingg diagrams to visualise the skhab gold grains from different sources. Gold
grains from preglacial and alluvial deposits are obsereetet bladed, whereas those from piedmont fan
sediments tend to be oblate. Factors such as hammering laintgfduring transport, and reflattening after
folding account for the variations in shape.

2.3.4 Anthropogenic Fragment Redistribution

Nyssen et al. [100] monitored rock fragment transportatiothe stepped mountains of Ethiopia over a

four year period. Limestone rocks were used as tracers fiirecexisting rocks were basalt and sandstone
(painted rocks were not used since they may have been pigkled shepherds). The long, intermediate, and
short diameters were used to replace basalt and sandsttkeewith limestone tracers of approximately the

same shape. The authors show that the degree of tracerdrtatgm over the years is related to the degree
of over-grazing by livestock and conclude that livestoantpling appears to be an important geomorphic
process.

2.3.5 Estimating Particle Properties with Computer Simuldions

Computer simulations of a large number of particles oftekensse of simplified models of particle shape.

For instance, a sample of particles may be modelled usiigseitls with the same volume, flatness, and
elongation. Sims et al. [119] use ellipsoidal models of thgragate particles in concrete to investigate strain
rate. They demonstrate that particle flathess and elomgptay an important role in determining concrete

viscosity.

Rather than using simple ellipsoidal models, Bullard, ®@a# and coworkers [20,52] take advantage of the
power of modern desktop computers to model concrete usinghapes based on real aggregate particles
(see Figure 2.2). Using particle shape based on real matietther than simpler ellipsoidal models has
the potential to provide more accurate simulations. The B&pe of real aggregate can be determined
using X-ray computed tomography, and then be included iin toenputer simulations. The authors aim to
use computer modelling to replace empirical testing fodjaténg concrete properties such as the degree of
hydration, pore percolation, diffusivity, and yield ssegscosity. Simulation predictions of certain properties
such as elastic moduli have been shown to agree closely wlities obtained in real experiments.
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(a) (b)

Figure 2.2 Computer simulations of concrete using 3D shapes baseaanparticles: (a) modelling concrete flow (picture
from Bullard et al. [20]), (b) simulation of coarse aggregat a mortar matrix flowing under mixing forces (picture fr@bar-
boczi et al. [52]).

2.4 Single View Silhouette-Based Particle Analysis

Other than shape, particle shape analysts are also i@driesingularity androughness These properties
are not addressed by this thesis, but are mentioned here giacfirst attempts at image-based particle
analysis were attempts to measure these properties. Bafage-based methods were used, angularity was
determined by comparing particles with Krumbein’s staddarart [70].

Schwarcz and Shane [117] use Fourier coefficients of the dawynof a particle projection (Fourier de-
scriptors) to derive several procedures for quantifyingudarity. First, they describe how measurements of
sphericity and angularity might be derived from a 3D modehefstone. They point out that 3D models are
rarely available and proceed to present their measurerttettare based on computing the Fourier descrip-
tors of a 2D projection of the stone. A measurement for sphigiis given as the mean squared deviation
between the silhouette boundary and the circular boundefipetl by the first Fourier descriptor. The au-
thors investigate several methods for measuring angulaaised on Fourier descriptors. One such method
involves determining the number of Fourier coefficientg #ra required to reconstruct the boundary so that
it fits the original boundary to within a specified tolerandeéhis type of measurement varies according to
surfaceroughnessas opposed to angularity.

Ehrlich and Weinberg [37] show how Fourier descriptors camused to discriminate grain differences aris-
ing from geographic, stratigraphic, and process factdats®f the average values of the first ten harmonics
are used to discriminate between grains from three diffegengraphical regions with a high success rate.
The same method is used to show how grain shape varies awogdadits position in the soil profile. Var-
ious means for defining roughness coefficients based on sugnaniange of Fourier coefficients are also
suggested.
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Diepenbroek et al. [31] give yet another definition of rouest using Fourier descriptors. They discard
the first two Fourier coefficients, which describe an ellijpged form a weighted sum of the remaining
coefficients, with the higher order coefficients receivingager weight. The method was used to detect
changes in roundness of gravel clasts being transported doountain rivers. Changes over distances as
small as 7km could be detected. Drevin et al. [32, 33] ingest means other than Fourier descriptors
for determining particle roundness. Wavelet and granutdimenethods are considered. They show that
their methods and the method of Diepenbroek et al. both pedesults that correlate well with the values
indicated by Krumbein’s chart.

2.5 Multi-View Silhouette-Based Particle Analysis

Since using single silhouette views results in the loss fafrination about the third dimension, there has
recently been research directed towandglti-view silhouette-based particle analysis. The goal of these
methods is to extract information about the three-dimeraishape of individual particles from multiple
silhouette views.

It is the objective of this thesis to extend this line of resbaby designing algorithms that are based on the
shape-from-silhouette ideas that have been developee iineld of computer vision.

2.5.1 Multiple Views from a Single Camera

Several groups of researchers have considered means foniabt multiple silhouette views of a particle
using a single camera. Typically this involves moving theipke and capturing images at different instants
in time (although Chapter 4 of this thesis introduces a nekthavhich different silhouette views are captured
simultaneously using mirrors). Using a single camera andimgathe particle has the advantage of lower
monetary expense than a multiple camera setup, but thisscatiike cost of requiring more time to capture
the images.

Motivated by the high monetary expense of laser scanningtamegraphic methods, Taylor [126] and
Lau [72] investigate the use of silhouettes as a cheapenatiee to quantify particle shape. A setup con-
sisting of a turntable with two orthogonal axes of rotatised Figure 2.3) is used to view a rock from any
direction. Individual rocks are glued to a rod, and imagescaptured from well-distributed viewpoints. A
ball of known diameter is used to calibrate the setup. Thibredion simply provides a conversion from
pixel units to millimetres (and therefore implicitly assesthat depth variation is sufficiently small to have
negligible effect on scale). Taylor and Lau are aware of flsaal hull concept, as it is noted that silhou-
ettes place a restriction on the volume of space that cantaim object, and a computer vision paper of
Laurentini [74] is cited. However, they decide to limit thaiitial investigations to estimating volume us-
ing silhouette area. Silhouette area averaged over 13 vewommputed for 126 rocks (crushed granite and
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Figure 2.3 Three images from a sequence captured using a turntahbleedev rotating individual rocks about two different axes
(top row), and the corresponding manually segmented silhougite#tom row)(pictures from Lau [72]). The images were used to
investigate volume prediction from multiple silhouettews.

rounded conglomerate rocks from a river bed). Plots of @eesilhouette area versus weight show a high
degree of correlation.

Chen et al. [25] measure the short, intermediate, and loagpetiers of a sample of aggregate particles by
attaching the particles to a clear plastic tray with two pedicular faces. The particles are imaged from two
perpendicular directions by rolling the tray onto each eftivo faces. Diameter values are measured from
the silhouette images. Elongated and flat particles are dstraded to produce hot-mix asphalt with lower

compactibility and higher breakage than compact particldse use of a tray with the perpendicular faces
for imaging stones from perpendicular directions is alsscdbed by Frost and Lai [50].

Fernlund [41] describes a method for capturing multiplevgén which particles are moved by hand. Two
views are captured for the particles: a side-on view and aiteyp. To capture the side-on view, the particles
are manually positioned on a luminous background in a sfagéion so that their maximum projected area
is observed by an overhead camera. To capture the top vievpdtiicles are manually positioned in an
upright position in a bed of luminous beads and sand. The bedsathe particles to be placed in a stable
position with their longest axes parallel to the viewingediion. The principal benefit of the method is its
low cost. Multiple particle silhouettes are captured infemaage. Longest and intermediate diameters are
measured from the side-on image, and shortest and intesteedinmeters are measured from the top-view
image. To find the corresponding silhouette pairs for eacticisg, the silhouettes are sorted by intermediate
diameter value, which is assumed to be the same across thenages. Although it is acknowledged that
this assumption may not hold in all cases, the method is tegpdo provide results that correlate well with
manual measurements.
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Commercial shape-from-silhouette systems for charaiterigemstone shape are produced by Sarin, an
Israeli company, and by Octonus, a Russian company [78]s& bgstems build 3D visual hull models of
individual rough gemstones to aid gemstone cutters. Malgghouette images of the rough gemstone are
captured by a single camera as the stone is rotated on alilernTdne rotation of a stone takes approximately
25 seconds. An optional laser range-finder can also be udauiltb3D models of rough gemstones with
concavities.

2.5.2 Multiple Views from Multiple Cameras

Multiple simultaneously triggered cameras provide theptél of greater throughput than multi-view single
camera setups. For this reason, various multi-cameraskaye been designed over the last decade. The two
most prominent multi-camera silhouette-based partictdyais systems described in the academic literature
are the WipFrag system and the University of lllinois Aggregimage Analyser.

WipFrag

The WipFrag system was developed at the University of MiggRalla by Maerz et al. [86, 87]. It consists
of two orthogonally mounted cameras that simultaneoushgiindividual particles (see Figure 2.4).

Figure 2.4 The WipFrag system. (Picture from Al Rousan [111])

The WipFrag system is used to estimate the aspect ratioscumah@s of individual particles from silhouette
images. Elongation, flatness, and volumes are derived freasorements of length, width and height.
Length and width are measured from the top-view image arnghhé& measured from the other. Length is
the longest caliper diameter of the silhouette, and widtiéscaliper diameter measured perpendicular to
the length. Height is measured from the side-view images. thé caliper diameter measured in the direction
of the top-view camera. The measured lengths are reordienedéssary so that length is longer than width,
which is in turn longer than height.
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Aspect ratio is the ratio of length to height. Volume is estied with the following experimentally deter-
mined equation:
volume= 0.8 x lengthx width x height (2.2)

The vision-based methods were compared with manual catigasurements of aspect ratio [86], whereas
results for volume estimation are not shown. The visioredasethods are found to be close to the manual
measurements in most cases; closeness is not, howevetifigdan

The University of lllinois Aggregate Image Analyser

The University of lllinois Aggregate Image Analyser (UIA)# the most sophisticated system for estimating
stone shape from silhouettes that is described in the adadiearature. It is the only setup that creates a 3D
model of each stone from multiple silhouettes. The 3D modetsused for volume estimation.

The UIAIA setup consists of three orthogonally mounted ca®.eA conveyor system presents the stones
to the cameras (see Figure 2.5). Images are captured as adidteptriggers a motion sensor. Explicit

Figure 2.5 The UIAIA: a three-camera setup at the University of llim¢picture from Rao [109]).

calibration of camera poses is not carried out. Rather, dlheecas are orthogonally positioned, and images
of spheres are used to ensure that the effective scaledarmthe same across the three views. This approach
implicitly assumes that the depth variation of each storseii§ciently small with respect to the distances to
the cameras that perspective distortion can be ignored.ofiilyeexplicit calibration that is carried out is to
use images of a sphere to determine the scale factor (tteatriapping of pixels to millimetres).

Volume estimates are made by computing a three-view visulhlofi the stone. However, the term visual
hull is not used, and the method seems to have been develogegeindently from (and without reference
to) shape-from-silhouette approaches described in thgotanvision literature. To compute the visual hull,
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Figure 2.6: Computing the visual hull from three orthogonal views {pie from Rao [109]).

voxels that do not project onto the silhouette foregrounalithree images are removed, leaving an estimate
of the 3D shape of the stone (see Figure 2.6).

Volume computation is applied to four spheres of known va@um test the accuracy of the voxel-based
visual hull volume estimates [109]. The largest spherefamated visual hull volume ranges from 101.38%
to 102.84% of the sphere volume (5 trials), whereas the sstalphere’s computed visual hull volume ranges
from 105.77% to 107.60% of the sphere volume (5 trials).

Since the exact 3-view visual hull of a sphere (from thre@ayonal orthographic views) is 11.9% larger
than the sphere (see Figure 2.7), itis unsurprising thatithal hull volume produces an overestimate when
used as an approximation of the volume of the imaged objeatclracies in the assumed orientation of the
cameras and image noise tend to result in a computed visllahhtiis smaller than the exact visual hull,
since visual hull voxels are required to project to foreguauegion inall views. Because of this, a real setup
can be expected to produce values lower than 11.9%.

The description of the UIAIA experiments makes no mentiat the 3-view visual hull volume is expected
to be larger than the sphere. Spatial quantisation erravésn@s the reason that the smallest sphere’s results
(which are closest to the noise-free ideal of 11.9%) cooedpo the greatest error when using visual hull
volume as an estimate of the volume of the imaged object.

In a further experiment, visual hull volumes are used as imate of stone volume for 50 pieces of ag-
gregate. Ground truth values are obtained by weighing theestand using the known density values to
compute volume. A mean absolute percentage error of 8.748p@sted.

The authors cite the inability of silhouettes to captureinfation about concavities in the stone as the
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Figure 2.7: (a) A sphere, (b) a 3-view visual hull of the sphere, and (6)\aew-visual hull of the sphere. The 3-view visual hull
is computed from three orthogonal views (the UIAIA camerafiguration), and its volume is 11.9% larger than the sph&re
6-view visual hull is computed using the camera configuratibthe high throughput, six-camera setup considered mttiésis
(each camera looks onto one of six parallel face pairs of al@aeglodecahedron; details are given in Chapter 5), andltsne is
4.5% larger than the sphere. (Visual hull surface regioagaloured to correspond to the camera view for which theaserfegion
projects to the silhouette outline.)

reason for consistent overestimation of volume by the Vieulh. Curiously, the tendency for a visual hull
computed from a finite number of views (three views in the adgbe UIAIA) to be larger than the imaged
object (whether convex or nonconvex) is not mentioned asssiple cause for the consistent overestimates
observed in both the experiments with stones and with sphere

The UIAIA is also used to estimate the ragia (termed the flat and elongated ratio), wharie the longest
diameter of the stone artds the shortest diameter that is perpendicular to the Idrdiameter. The longest
diameter, and the diameter perpendicular to the longestetir is computed for all three views. The largest
of these six diameter values is used to estinaatnd the smallest is used to estimatépproximately one
thousand aggregate particles were classified into thresedeo®/c: smaller than 3:1, 3:1-5:1, and greater
than 5:1. This was done both manually with a caliper deviog, asing the UIAIA. The UIAIA is found

to produce more repeatable results than the manual measutein terms of the proportion of particles in
each class by weight. The class proportions obtained by tAéALAre found to be in good agreement with
the manually determined classes, but are not quantified.

The UIAIA is also used to emulate sieving. The smallest ofdngest diameters from each 3-view image set
is used to predict the sieve class for each particle. Thecgatg particles are sieved into five sieve classes
using square-aperture sieves. Plots of histograms fromAJbeve emulations are compared with those

obtained from manual sieving and are found to match closely.

The UIAIA has also been used to approximate local shape pgiepesuch as the angularity and texture of
stones.

21



2.6 Recognising Individual Particles

The academic literature makes few references to the probleecognising individual particles. The existing
references either are speculative and do not provide datwdi evaluations of proposed methods, or simply
describe the need for particle recognition rather than gsimg solutions to the problem. Note, however,
that object recognition is one of the main goals of compuigion, and a wealth of literature exists on the
subject.

In a theoretical paper [127], Taylor proposes to describeih shape of particles by their principal moments.
He states that it is extremely unlikely for two particles ® ¢ongruent, and proposes that the principal
moments can be used to uniquely identify individual pagticl Several shapes are demonstrated to have
the same sieve size, yet the shapes are uniquely identifiglfleeir moments. The author aims to test his
proposed formulation using real particles and tomograghape reconstruction in the future.

In a later paper [126], Taylor points out that it is not easydonfirm that one has selected a given particle
from a group” and proposes that moments of two voxel reptagens are used to determine whether or not
the representations correspond to the same particle. fegular particles, each voxel representation will
have a unique shape if sufficient voxels are used. Taylor snwbiworkers currently identify individual rocks
by imprinting a number on each rock. Note that this approadgmpractical for smaller stones (such as the
garnets and gemstones used in this thesis), and requirasairdantification, whereas this thesis provides
methods to enable automated identification.

Fernlund [41] mentions identifying particles from silhdigs using the intermediate diameter (as described in
Section 2.5.1). This is done to reconcile pairs of silhasetif the same particle captured from approximately
orthogonal viewpoints. However, no quantitative assessiwiethe accuracy of this approach is given.

2.7 Reconstruction Techniques Not Based on Silhouettes

Shape-from-silhouette methods are by no means the onlyoaethat have been considered for determining
the 3D shape characteristics of particles. Shape-fronmsétte methods are typically favoured over com-
peting methods because of their low monetary cost, sintypliahd robustness. Other methods may achieve
greater accuracy; for instance, they may be able to modilciconcavities whose shape cannot be captured
by silhouettes from any viewpoint.

A few examples of particle shape reconstruction technidgiugisare not based on silhouettes follow.

Bouguet [13] demonstrates the use of point-basteceo reconstructionf a rock from a turntable sequence
(see Figure 2.8). Using the texture of the rock’s surfac@tpare tracked across multiple frames and 3D
coordinates are inferred from the points’ 2D image locatiorhe method is not amenable to high throughput
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Figure 2.8 Rock shape reconstruction. Images are captured as a roctated on a turntable. The top row of images shows 5
of the 226 images used. The camera trajectory and recoteir@® pointgbottom, left)and triangular mesh model formed with
Delaunay triangulatiofbottom, right)are also shown (pictures from Bouguet [13]).

modelling since the rock must be rotated on a turntable, HBD models are potentially highly accurate.
The method relies on the rock’s texture for point tracking extherefore unsuitable for textureless particles.

Erdogan et al. [38] describe the use of X-ray tomography ¢quaing 3D particle shape. The particles must
be embedded in a cement-like matrix, and are rotated in bbtite X-ray scanner for several hours, so that
multiple slices can be collated to form a 3D shape model. iglalparticles are imaged simultaneously, and
individual particles are segmented from the 3D image. Iinpdrtant that the matrix have significantly dif-
ferent X-ray absorption properties from the particle. Ththars manually measured long, intermediate and
short diameters for three rocks using digital calipers. iaimum discrepancy between the X-ray models
and the manual measurements was 2.6 mm for a longest dianh&®56 mm (i.e., an error of approximately
3.5%).

Lanaro and Tolppanen describe an alternative X-ray imagéatgp. A cone beam is used (as opposed to
collating slices.) The authors cite greater accuracy aadlbility to model the interior of opaque solids as
the reasons for preferring the cone beam approach to seasples of rock particles, glass beads and quartz
sand are demonstrated to have different shape propertiestis of elongation and flathess measured from
3D reconstructions. It is suggested that their method causkd for creating approximate 3D models for
detailed numerical modelling of particulate processescé&realistic particle simulations typically require a
large number of particles to be considered, it is sugges$iadsimple ellipsoidal models that share volume,
elongation, and flatness properties with the 3D reconstmgbe used. This reduces the computational load.

Unlike X-ray tomography methods, laser scanning acquivece data points one at a time. Lanaro and
Tolppanen [71] describe a laser scanning setup in whichuHace of individual stones is scanned with a
laser and viewed by two cameras. Triangulation of the ptigjeof the laser line yields the corresponding 3D
surface coordinates. Since a scan only captures one sidetoparticle, it must be turned over and rescanned
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to capture the hidden side. To register the two surfaces onaxon reference frame, at least three point
correspondences are required. These are determined hyg tfuee ball bearings to each particle. The centre
points of the balls are identified and used as reference o8¢ven railroad ballast particles (32—64 mm)

were reconstructed. The computed volumes differed frongtbend truth values (measured manually) with

a greatest underestimate of 5.3% and a greatest overestiinaiR%.

2.8 Summary

This chapter has illustrated the broad range of interesaitigle shape analysis from many different fields,
and the range of solutions that have been devised to estppaatiele shape. This provides the historical
background to the work that is presented in this thesis.

The principal shape features of interest are particle veluand the long, intermediate, and short diameters.
Many approaches, both silhouette-based and others, havecheried out to estimate these shape features.
Researchers have tried various different approaches torgagpsilhouettes from multiple viewpoints (multi-
camera setups, turntables, manual repositioning of pestiperpendicular faced trays).

All the multi-view silhouette-based setups (with the pbksiexception of the commercial turntable systems
for which explanations of methodology are not availabl) o& accurate positioning of the apparatus, rather
than calibration. Calibration is limited to estimating lecso that pixel coordinates may be converted to world
coordinates such as millimetres. This makes the implictiagtion that a weak perspective approximation
is appropriate. This thesis proposes new methods to cadibralti-view setups so that principled estimates
of particle shape can be made using geometric reasoningsatidht individual particles can be efficiently
and effectively recognised from their silhouettes.

Although silhouette-based particle analysis makes usemndapts that are covered in the computer vision
literature (such as the visual hull), there appears to the dtvareness amongst particle analysis researchers
of the shape-from-silhouette research from the field of asewpvision.

The problem of individual particle recognition has been tioered a few times in the particle analysis liter-
ature, but no quantitative studies appear to have beeredanit.

Particle shape reconstruction has been attempted wittsitfuouette-based approaches. Examples include
X-ray tomography, laser scanning, and stereo reconstrucélthough these systems have the potential to
reconstruct shape more accurately than silhouette-baséubds, they tend to be both expensive and slow.
Attention has been paid to computational efficiency for tlyp@thms presented in this thesis. In practice,
feeding a batch of particles through the six-camera setua fate of ten particles per second) takes more
time than computing the silhouette-based estimates okghiaperties, or matching the silhouette sets across
two runs.
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Chapter 3

The Geometry of Silhouette Sets

3.1 Introduction

This chapter overviews the geometry of silhouette sets mindduces important concepts that will be used
in this thesis. First theisual hull the simple and widely-used method for approximating 3Dpshfaom
silhouettes, is covered. The explanation of the visual &lldws the related concepts of visual cones, cone
strips, frontier points and viewing edges to be introduced.

Next, two concepts that are central to the methods develiopihis thesis are covered: (1) the viewing edge
midpoint hull (VEMH) as a means for efficiently estimatingtBD shape of the convex hull of a stone from
its silhouettes, and (2) outer epipolar tangency error (Edreas a measure of silhouette inconsistency.

The VEMH plays a central role in this thesis. However it issl@®portant than ET error since an obvi-
ous alternative for efficiently approximating 3D shape freithouettes exists: the visual hull. Efficiently
approximating 3D shape from silhouettes will play a rolehia following chapters:

1. In Chapter 6, moments computed from approximate 3D shapkbe used to form an initial pose
estimate between silhouette set pairs of the same stongaoBleeestimate is subsequently refined using
ET error. Thea, b, andc diameters which are widely used by particle shape analgstsgli§cussed in
Chapter 2) will then be measured from approximated 3D shapes

2. Chapter 8 describes a computationally efficient methoaddonputing approximate dissimilarity be-
tween silhouette sets. The method is based on an estimdie 8Dt shape of a stone computed from
its silhouettes.

3. Chapter 10, the VEMH will be used to emulate sieve sizing.
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In this chapter, the VEMH is introduced by first demonstmtiow viewing edges impose bounds on the
caliper diameter of the corresponding stone. This allowsigmer and lower bound to be computed for
the longest and shortest diameter (given a noise-freeusitt® set). Next, the VEMH is presented as an
alternative to the visual hull for estimating 3D stone shipm silhouettes.

In later chapters, the ET error will form the basis for depétg the following methods:

1. In Chapter 4, the ET error is used to calibrate a mirroetaetup from silhouettes.
2. In Chapter 5, the ET error is used to calibrate a high thipugsix-camera setup from silhouettes.

3. Chapter 6 demonstrates how the ET error can be used tdhefeelative pose between two silhouette
sets of the same obiject.

4. Chapter 7 shows how the pose estimation method of Chaptar Be used to distinguish two silhouette
sets of the same object (a match) from two silhouette setgwfélifferent objects (a mismatch).

The ET error is introduced by first briefly covering silhoeetbnsistency in general. The ET error, which
is based on the epipolar tangency constraint (a necessarydufficient condition for consistency) is then
described.

The methods described in this chapter have been choserefostimplicity, which leads to efficient compu-
tation. Efficient computation is important for online congions of the high-throughput six-camera setup
that captures image sets at a rate of ten stones per secdinlertefy is also crucial for solving the batch
matching problem for realistic sized stone batches (hulsdi@ thousands of stones per batch) without mak-
ing use of unreasonably long running times (computing th&ehirgg should not take longer than it takes to
feed the stones through the camera setup).

3.2 Visual Hulls

3.2.1 The Visual Hull Concept

The termvisual hull was coined by Laurentini [73] in the 1990s, but the use of Hrgdst silhouette-
consistent object as a means for 3D modelling dates bacletadink of Baumgart in the 1970s [7]. Lauren-
tini’s initial use of the term visual hull described the lasy object consistent with all possible silhouettes,
but the term is now usually used to refer to the largest oltfeadtis consistent with a finite set of available
silhouettes [76, 91]. In this thesis, the visual hull is thegest object that is consistent with a given set of
silhouette views. Théne hull is the complement of space covered by all lines that do nat fresugh the
object. Line hull is a term from the field of computational geiry that is equivalent to Laurentini’s visual
hull computed from all viewpoints outside an object’s conkell [90].
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(a) (b)

© (d)

Figure 3.1 The visual hull concept: (a) a duck viewed by two cameragivio silhouette views of the duck, (c) the two visual
cones associated with the two silhouette views, (d) theavisull formed from the two silhouette views.

The visual hull concept is illustrated in Figure 3.1. Fig@c&b shows two silhouette views of a duck (the
object being imaged). Camera centres are represented llyspin@res. For convenience, the image planes
are placedn front of the camera centres, and the projected silhouette vieevstazwn non-inverted; for
the purposes of this thesis, such a setup is geometricalliyagnt to placing the image planes behind the
camera centred/isual conegorresponding to each silhouette are shown in Figure 3.1isual cone is the
volume of space that the object cannot lie outside of, gitenabserved silhouette. The intersection of the
visual cones is the visual hull (shown in Figure 3.1d). Treaigl hull cannot be smaller than the object. With
two silhouettes, the visual hull is often a poor approximatio the object. However, if further silhouette
views are added, more information about which volumes ofs@ae empty is added, and the visual hull
becomes a better approximation to the object. Figure 3.@shasual hulls of the duck formed from three
and from ten cameras. With the additional camera views, wistel cones carve away 3D regions that do
not form part of the object, leaving a closer approximatiomhe object. Concave surface regions, however,
cannot be reconstructed by the visual hull, since such medjie interior of a coffee mug, for instance) do
not affect silhouette shape. In a sense, it is the line huthefobject that is approximated by the visual hull.
Fortunately, most particles are well-approximated byrtheé hulls. In addition, many properties of interest
(such as caliper diameters) have the same value when mddeumethe object, its line hull, or its convex
hull.
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Figure 3.2 More accurate shape from additional views: (a) visual sdnem three silhouette views, (b) visual cones from ten
silhouette views, (c) the visual hull from the three silhnbeeiews, (d) the visual hull from the ten silhouette views.

The surface of the visual hull is made up of surface regioms fthe visual cones. The part of the visual hull
surface associated with each visual cone ®@e strip Since this thesis only considers single objects of
genus zero (i.e., objects without holes), each cone stripd@ single ring around the visual hull. At certain
points, the rings are of zero width. These points are cditetier pointsand are important for the methods
developed in this work. Frontier points are discussed inentlmtail in Section 3.5. Note that in practice,
camera parameters and silhouettes will not be known exéaly there will be some degree of noise). This
means that some cone strips will be discontinuous if contpdirectly from visual cone intersections.

Visual hull approximations have been popular as a relatisighple and robust technique for 3D modelling,
since silhouettes can be easily extracted under contrtijating conditions. For instance, if diffuse back-
lights are used so that the background appears much ligtaarthe foreground, then the silhouette can be
extracted using a simple threshold on the pixel intensityes
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3.2.2 Computing the Visual Hull

In order to determine the visual hull corresponding to a $etilbouettes, the cameras that produced the
images must be calibrated. This means that the internal reepagameters (such as focal length, principal
point) and the pose must be (at least approximately) knowihis thesis, the termilhouette seis used to
refer to a calibrated set of silhouettes (i.e., the view p@se known in a common reference frame, and the
camera internals are known). Furthermore, the silhouettltde approximated byolygons As pointed
out by Lazebnik [75], the use of polygons rather than highrdepspline curves allows simpler and more
efficient methods to be developed.

Voxel-Based Approaches

A simple means of approximating the visual hull from a silette set is to consider the voxels that tessellate
the common field of view. The size of the voxels will determihe resolution of the computed visual hull.
Only voxels that project into the silhouette foreground mllaviews are classified as part of the visual hull.
Other voxels are classified as empty.

The efficiency of the voxel-based method can be improved mguen octree decomposition as described
by Szeliski [123]. Initially, a coarse voxel grid is considd. Any voxel that projects entirely into the
background irany view is classified as empty. Any voxel that projects entiiiekp the foreground irall
views is classified as visual hull. The remaining voxels aehesubdivided into eight smaller voxels that are
then classified as empty, visual hull, or subdivide. Sulsitivi ceases once a sufficiently high resolution has
been achieved.

Once a voxel representation has been computed, a technigheas marching cubes [84] can be used to
create a polygonal surface. This approach considers afllgdikrough which the surface passes. (If octree
subdivision is used, these are the smallest voxels.) Acifatch is created for each of these voxels. The
shape of the patch is determined by which of the voxel vestigeinside the visual hull.

Surface-Based Approaches

A second group of approaches proceed by considering thacsurather than the volume of the visual hull.
This includes some of the original approaches [7] in whichstactive solid geometric techniques were
used to directly intersect the visual cones.

Since intersecting general polyhedra is slow, methods begea developed to take into account the specific
geometry of the visual cones, so that they may be efficientigréected. Matusik et al. [91] make use of
an edge-bin data structure to store edges associated vgthaamanges of lines through the epipole. The
method achieves efficiency by computing intersections inilygonal intersections are first formed in the
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image plane, and then these intersections are intersediedme another on planes defined by facets of the
viewing cones.

Franco and Boyer [48] describe another efficient methoddanmuting polygonal surface models of silhou-
ettes. The first step is to compute thiewing edge$rom a silhouette set. Aiewing lineis a line that passes
through a silhouette vertex and its camera centre. Inténgea viewing line with the visual cones from all
other cameras leaves a viewing edge. The vertices of thengegdge endpoints are vertices of the visual
hull polyhedron. Franco and Boyer show how the connectiwftthese vertices and the remaining surface
points can be determined by using local orientation and ectivity rules to walk along the viewing cone
intersection boundaries.

Several alternative approaches for computing the visulildna described in the computer vision litera-
ture [17,76, 85,125].

It is interesting to note that the convex hull of the visuall kkan be computed relatively simply by forming
an intersection of all halfspaces defined by the edges ofitheugtte polygons. The plane specifying a
halfspace is formed by the edge and its camera centre. Mdiciert halfspace intersection algorithms
exist. For instance, the Quickhull algorithm [5] is ©{nlogn) time complexity forn halfspaces. If the
planes are treated as points in dual space, then the dudie ¢ddets of their 3D convex hull specify the
visual hull vertices in primal space.

3.3 Constraints Imposed by Viewing Edges

This section demonstrates that silhouette sets imposeanatipper and lower bound on the caliper diameter
in a given direction. These bounds are derived by consigefiewing edges.

By considering the upper and lower bounds over all direstidgnis possible to compute upper and lower
bounds for the longest and shortest diameter of a stone fiosilhouette set. Although estimating the
longest and shortest diameter of a particle from its silkteuset is of interest to particle shape analysts (as
discussed in Chapter 2), it does not appear to have beeredaut that a silhouette set imposes bounds on
these properties.

3.3.1 Bounds on Caliper Diameters in a Given Direction
Since the caliper diameter of a stone in a given directiohéssime as that of its convex hull, for simplic-

ity the convex hull of the stone will be considered. The cenkalls of the observed silhouettes are the
projections of the convex hull of the stone.
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Let the caliper diameter of a stone in directiofe d;,. The valued; is the distance between two parallel
support planes that are tangent to and enclose the objgctréR3.3a). The tangent plane normals are parallel
tor.

The 3D shape of the object is unknown; all that is availabke sihouette set. The upper boudgl for the
caliper diameter is the largedt value that can be computed from an object that could haveupestithe
observed silhouettes. The visual hull provides the uppentddord,. No greater value is possible, since
if either support plane were moved away from the object, rjeatwould be able to be both tangent to the
support planes and able to produce the observed silhouettes

The method for computing a caliper interval for a given diatis illustrated in Figure 3.3. The figure shows
the support planes of the actual caliper diameter for a gieetion (Figure 3.3a) and three silhouette views
that are used to construct a visual hull (Figure 3.3b). Thealihull is the largest object that is consistent
with the silhouettes. It can be used to compute the largdigtecaliameter along the given direction that is
consistent with the silhouettes (Figure 3.3c).

Identifying the lower boundl,, (Figure 3.3d) ord, from the silhouette set is less obvious. The support
planes ofd , must be as close as possible without destroying any corgs gtrat generate the observed
silhouettes.

Finding the smallest consistent caliper diameter alongrangdirection is illustrated in more detail in Fig-
ure 3.4. Figure 3.4a shows the visual hull model that is maefuone strips corresponding to the three
silhouettes. In the noise-free case, the cone strips prej@ctly onto the corresponding silhouette outlines.
Each cone strip represents the only regions in 3D space tiagenerate the corresponding silhouette out-
line and remain consistent with all silhouettesvi@wing edges the portion of a ray through the silhouette
outline that coincides with the corresponding cone stripm8 part of each viewing edge must be tangent
to the object, so that the point on the silhouette outlinesisegated. No viewing edge can therefore lie out-
side the support planes that contain the object. This pesvidmeans for calculating the smallest consistent
caliper diameter: the support planes must be as close tgashpossible, without any viewing edge lying
entirely outside the region between the support planesidaré 3.4, the upper support plane is limited by
the viewing edges that form the green cone strip (Figure)3ifithe support plane were moved any closer,
viewing edges from the green cone strip would lie entirelysile the region between the support planes.
Note that the portion of the visual hull that lies betweenggport planes generates the observed silhouettes,
and is therefore an example of a silhouette-consistentohijigh a diameted,; in directionr.

3.3.2 Bounds on the Longest and Shortest Diameters

Since silhouette sets impose bounds on the diameter in a divection, it is interesting to note that a sil-
houette set imposes bounds on the longest and shortesttdianfguantities of interest to particle shape
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(@) (b)

(d)

(©

Figure 3.3 Caliper intervals: (a) the caliper diameter of a stone fgivan direction, (b) the available information: three eillettes
from which a visual hull consisting of cone strips from eathaiette can be constructed, (c) the maximum caliper dianaong
the given direction that is consistent with the silhouettg §d) the minimum caliper diameter along the given ditthat is

consistent with the silhouette set.

(© (d)

(@) (b)

Figure 3.4 Diagram showing (@) the visual hull, and (b—d) the threestiturent cone strip components along with the support glane
for the minimum consistent caliper diameter. The exampés tise same stone, silhouettes, and caliper direction asa=33.
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analysts). The bounds are, however, geometrical boundararahly valid for noise-free silhouettes. Never-
theless, the bounds provide insight into the inherent, @eometrical) limits of the extent to which longest
and shortest diameters can be computed from silhouette sets

The upper bound for both the longest diameter and the shditeaeter are simply computed by finding the
longest diameter and the shortest diameter of the visublitedause no larger shape is consistent with the
silhouettes. Computational geometers have discoverert sghutions for determining the longest diameter
(termed simply thediamete) and the shortest diameter (thadth) of arbitrary polyhedra [24,57]. These
methods can be applied directly to a polyhedral repredentaif the visual hull to obtain upper bound
values.

Lower bounds for the longest and shortest diameter are rippated by considering an approximately uni-
form dense sampling of directions obtained using subdimisiof an icosahedron [61]. The best solution
from dense sampling is then refined using a conjugate gradmimiser which makes use of an analytical
expression for the partial derivatives of the lower bourahtiters with respect to an azimuth-elevation angle
parameterisation of direction.

An experiment was carried out using synthetic data in whieHangest and shortest diameter of a polyhedral
stone model is compared with the bounds computed from i®witte set. Synthetic silhouettes were
generated using 3-, 4-, 6- and 10-camera setups. To proiedgweints that are well distributed about the
viewing hemisphere, setups withcameras are positioned to look onto the parallel face paas2o-faced
Platonic solid (such setups are described in more detathapr 5). The refined visual hull models of a data
set of uncut gemstones, illustrated in Appendix C (pages-222), were used as polyhedral stone models.
The stones were randomly oriented. For each polyhedraé stadel, the longest and shortest diameter was
computed. The upper and lower bounds were then computedsitbauette sets of the stone. These bounds
are expressed as a percentage of the actual value. |dealilgr bounds should be less than 100% of the
true value, and upper bounds should be greater than 100% afud value, but since the bounds are only
approximated, there are a small number of cases in whiclisthist true.

Figure 3.5 shows plots of the distributions of bounds forfthe different camera setups considered. To aid
comparison, the upper half of each sub-plot shows distabstfor the bounds on the smallest diameter, and
the lower half of each sub-plot shows distributions for tleeitds on the longest diameter. As the number
of cameras is increased, the bounds move closer to 100%isTtésause the additional views place tighter
constraints on the range of possible values. Notice thabthmds on the longest diameter are closer to
100% than those on the shortest diameter, indicating tlea¢ tis less uncertainty on its value. Interestingly,
the plots indicate that the longest diameter is better aqpmiated by its lower bound, whereas the shortest
diameter is better approximated by its upper bound.
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Figure 3.5 Distributions of bounding values computed from silhoeetets as specified as a percentage of the actual values.
Silhouette sets were computed from the 1423 polyhedrakstardels illustrated on pages 222—-224.

3.4 Viewing Edge Midpoint Hulls for Approximating Shape

The viewing edge midpoint hull (VEMH) is proposed as an akive to the visual hull for approximating
the 3D convex hull of a stone from the 2D convex hulls of ithailettes. The VEMH is the convex hull of
the midpoints of all viewing edges. The silhouette projatsi of the VEMH are the same as the convex hulls
of the observed silhouettes in the noise-free case, so tiH/E a silhouette-consistent object.
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3.4.1 Advantages of the VEMH
Use of the Convex Hull

The approach taken in this thesis is to attempt to recoristngc3D shape of the convex hull of a stone
from its silhouettes rather than the possibly nonconveyeshd the stone. Using convex hulls simplifies
computations and allows for 3D shape to be approximated mifi@ently than if nonconvex shapes are
considered. This approach is useful in two contexts:

1. Since the caliper diameter of a stone in a given directiothé same as that of its convex hull, the
VEMH can be used to estimate caliper diameters. This will beedfor both estimating the short,
intermediate, and long diameters of a stone and for estigaticaliper diameter distribution to aid
recognition.

2. Since the principal axes of the convex hull of a stone candeel to specify its pose with respect to
some reference frame, the VEMH is used to approximate the gba stone from its silhouette set.
This provides an initial pose estimate that will be used tgnasilhouette sets of the same stone in a
common reference frame.

Comparison with the Visual Hull

The aim of the VEMH is to provide a more accurate estimate ®Bih shape of stones from silhouettes than
the visual hull.

Visual hulls often have sharp edges where cone strips md#étough geometrically the visual hull could
be the object that generated the silhouettes, more ofteshtdng edges are artefacts that do not exist on the
actual object. Unless by chance a stone’s surface is tatgehé cone strip near the regions where cone
strips meet, the volume of the visual hull near the cone sttgrsections and far from the frontier points is
not shared by the stone.

In general, an object will be tangent to the viewing edge & point along the viewing edge. Using the
visual hull to approximate stone shape considers the stohe tangent to the entire viewing edge (this is
an extremely unlikely coincidental alignment of the ston@nce stones are not in general smooth, no use
of the silhouette curvature is used for interpolation, drerhidpoint of the viewing edge is simply used as
the point of tangency for the shape approximation. The coingdl of the midpoints is used as the shape
approximation. Although additional volume could be inamgted into the shape approximation, this is not
done for two reasons:
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1. Since the VEMH is silhouette-consistent, the silhowsette not provide any evidence of the presence
or absence of additional volume. One would have to make uagdbri knowledge of shape. Since
stones are irregular in shape there is no obvepsiori knowledge to incorporate.

2. To a certain extent, many stone surfaces consist of lawatwre regions (flattish faces) that are joined
by high curvature regions (edges). Since the stones areaaillyi oriented with respect to the cameras,
high curvature regions are most likely to form contour gatws, with the flatter regions in between.
This parallels with the VEMH in which rims are joined by flatés, and is unlike the visual hull in
which the volume extends to the limit of silhouette consiste

Figure 3.6 illustrates the differences between visualshaiidd VEMHs. Note that the much of the visual
hull volume in the regions where cone strips meet, and wiiabsent in the VEMHS, is also absent in the
original stones.

3.4.2 Alternative 3D Shape Estimates from Silhouette Sets

Several other approaches are described in the literaturestonating the 3D shape of an object from its
silhouettes. The main advantage of the VEMH over these rdstisat computational efficiency (how this is
achieved is described in Section 3.4.3) and its simplicity.

Visual Shapes

Franco et al. [49] introduce a family of silhouette-coresigt3D objects that they termisual shapesTheir
approach is similar to the VEMH in that a portion of the viegiedges is included to ensure silhouette con-
sistency. Three approaches for selecting portions areestegdy (1) thinning the viewing edges, (2) selecting
a single random contact point, and (3) choosing the contiat porresponding to a local order 2 surface.
Of the three approaches, the VEMH is most similar to the sg&tccétowever, the VEMH approach makes
use of the midpoint instead of a random contact point. Coetpaith the random approach, the midpoint
approach reduces by a factor of two the maximum possiblardist between the actual contact point and
the assumed contact point. (Despite the similarity betwbeVEMH and visual shapes, the VEMH was
developed independently and prior to the publication ofvikaal shapes.) To determine a polyhedron from
the visual shape points, Franco et al. compute the Delawgteghedrisation of the points, and then carve
tetrahedra that project outside any silhouette.

Dual-Space Approaches

Another approach to approximating 3D shape from silhosg#tdo represent tangent planes to the object
(that are defined by the silhouette outlines) as points ih sjpce, and then to estimate the dual surface of

36



Figure 3.6 Visual hulls and VEMHSs generated from three orthogondiaiktte views of stones. The first row (a—c) shows three
stones. The second row (d—f) shows the 3-view visual hullspzded from 3-view silhouette sets of the above stones. Thealv
hull surfaces are coloured according to the cone stripstkiggt are made up from. Viewing edge midpoints are shown a#l sma
spheres. The third row (g—i) shows the rims of the VEMHs. Eha® the loci of the viewing edge midpoints; it is the rimgt tha
generate the silhouette outlines (i.e., the silhouettinastare projections of the rims). The fourth row (j—I) sksalve VEMHSs: the
convex hulls of the viewing edge midpoints.
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the object [17, 68, 80]. However, as pointed out by Francd.d448], these approaches do not enforce the
constraint that other silhouettes limit the position ofgancy on the viewing line (i.e., the tangency must
occur on a viewing edge, rather than anywhere along a vieliria}j these approaches are therefore unsuit-
able for sparse silhouette sets in which the viewpoints adistributed (as is the case for the silhouette
sets considered in this thesis.) In addition, the dual-@gproaches assume that surfaces can be locally
modelled with a quadric; this approach is unlikely to workilwdth stones, since they are not in general
smooth.

Nevertheless, itis noted that a dual-space approach miayayigmod solution to the problem of estimating the
convex hullof a stone from its silhouette set. The tangent envelopeespanding to the convex polygonal

representation of each silhouette boundary is a planarezopelygon in dual space [110]. (The tangent
planes at the crossing points of these planar convex posygorrespond to frontier points in primal space.)
The convex hull of these polygons corresponds to the viaubirhprimal space. (This arises from the duality
between halfspace intersections in primal space and cdnyein dual space.) This approach provides two
useful properties:

1. Points may be added in dual space (to the original poimtsate the vertices of the planar convex
polygons). The convex hull of all points corresponds to &lpetiron in primal space that is a carved
version of the original visual hull. Ensuring that all paitie on the surface of the convex hull in dual
space ensures that the corresponding primal space potyhedsilhouette-consistent (i.e., it generates
the observed silhouettes). Convexity preserving intemi of the planar convex polygon vertices
may therefore provide a smooth silhouette-consistenteshap

2. Since the convex polygons corresponding to each silteaet planar, methods for interpolating cross
sections [9] may provide a means for computing a smoothiitie-consistent shape.

Radial Basis Functions

As with the VEMH, Collings et al. [29, 30] impose the restidct of approximating the 3D shape of convex
objects from convex silhouettes. They approximate a cosadixl from its silhouettes by fitting implicit
radial basis functions. This is achieved by computing theitipms of frontier points, which are assumed
to lie on the surface, and by incorporating local curvaturigamtier points. The method relies on the solid
being sufficiently smooth that local curvature can be usedtéspolate the surface regions between frontier
points, and is therefore not applicable to stones, for whighassumption is not generally valid. Unlike the
VEMH approximation, the method does not enforce the comsttiat the object is tangent to the viewing
edge interval on each viewing line. The reconstructed sleg®erefore not constrained to be silhouette-
consistent as it is not constrained to lie within the visuadl.h
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Triangular Spline Models

Sullivan and Ponce [121] describe a method in which trisaigspline models are used to approximate the
3D shape of an object from its silhouettes. The spline maddéformed using an iterative minimisation of
the average distance between the surface and viewing lafesed by the observed silhouette set.

The Constant Depth Rim Hull

Possibly the simplest and most efficient estimate of 3D sfrape multiple silhouettes is the constant depth

rim hull (CDRH). Marr [88] speculates that the human visuatem may infer 3D shape from silhouettes

by assuming that the rim (contour generator) is planar, @@istant depth). (This is however disputed in
a later article by Koenderink [69]). Regardless of whethenat the human visual system may infer shape
by assuming planar rims, the assumption of planar rims gesvia simple and computationally efficient

means for approximating the 3D shape of stones from multpf®uette views. First the object depth is

approximated by triangulating the centres of each sillteuet provide an approximate centre point. The
polygonal silhouette boundaries are then backprojectedetaepth of the centre point to form planar rims

at that depth. The convex hull of the planar rims is the CDRHteNhat although the CDRH is used to

approximate 3D shape, it is not necessarily silhouettesistant: although the planar rims ensure that the
CDRH projections are sufficiently large to cover the silhte® the projections may be larger than the
silhouettes.

Assuming constant depth rims for approximating 3D shape doeappear to have been used for stones, but
has been used for other objects such as fruit [67].

The CDRH is introduced in this thesis mainly to justify thedaidnal complexity used in computing the
VEMH. The CDRH and the VEMH are similar in that both computé@@for each silhouette in the silhouette
set. (The rim projection is the corresponding silhouettdireel) The CDRH and the VEMH differ in
that CDRH rims are of constant depth, whereas VEMH rims may wadepth. To justify the additional
complexity of the VEMH it will be demonstrated that it proesl more accurate estimates of 3D shape (for
the tasks relevant to this thesis) than the CDRH.

Figure 3.7 shows an example that shows the VEMH and CDRH cteddtom three orthogonal silhouette
sets of convex stones.

3.4.3 Computing the VEMH
The VEMH is computed by considering, in turn, the viewinglimassing through each vertex of the polygons

representing each of the silhouettes in the set. Each rémgasithouette in the set (i.e., the silhouettes other
than that of the viewing line under consideration) is useidéatify segments of the line that the object may
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Figure 3.7: Estimating convex shape with rims using the VEMH and the EDRhe first column shows the rims generated by
a 3-view silhouette formed from three orthogonal cameramsRare shown witt{above)and without(below)the imaged stone.
The second column shows rims calculated using the viewigg eddpoints that are computed using the 3-view silhouetteThe
convex hull of the midpoints (the VEMH) is also shown. Thadhtolumn shows rims that are calculated by backprojectig t
silhouette boundaries to a constant depth that is detedripdriangulating the three silhouette centroids. Thengidated point
that defines the constant depth is shown in purple. The cdmuiéxf the constant depth rims (the CDRH) is also shown. Nioat
some portions of the constant depth rims lie within the CDR#ldating that it is not silhouette-consistent.

lie within. The intersection of all of the segments is themiiey edge. The convex hull of all viewing edge
midpoints is the VEMH. For computing caliper diameters af ¥iEMH, it is not necessary to explicitly
compute the convex hull of the midpoints, as the caliper di@mof the 3D point set (consisting of all
viewing edge midpoints) can be used instead of a polyhedpaksentation of the VEMH.

Viewing Line Projections

To identify the segment of the viewing line that a silhouekbes not imply as being empty, the viewing line
is projected onto the silhouette. This is illustrated inUf&y3.8 in which the viewing line corresponding to
vertexmis under consideration.

The viewing line passes through the poiBts(the camera centre of Camera B), M, andP; in the figure.
Its projection is easily computed by projecti@g andm on to Camera 2's image plane. The viewing line
projection is illustrated by the line passing throusgh (an epipole: Camera 1's projection onto Camera 2’s
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Figure 3.8 Computing a viewing edge from two convex silhouette viewimes are represented as thin cylinders and points are
represented as small spheres to aid 3D visualisation. Tinéas the viewing edge midpoint.

image plane)p; and p,. The pointsp; and p, are the points of intersection of Polygon 2 with the viewing
line projection. Since the polygons are convex, there caatmeost two such intersection points. Because
of noise, there may be no intersection points in some cases.

Precomputed Edge-Bin Data Structures

An edge-bin data structure is precomputed for each silbexggtipole pair. The edge-bin data structure
allows the intersections of a viewing line projection thghuthe epipole and the silhouette to be rapidly
computed.

The edge-bin data structure is computed in a similar mearnisetmne described by Matusik et al. [91].
However, since only convex silhouettes are used, it can palated using a simpler algorithm.
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First, bin boundaries are determined by sorting the polyganices according to the angle made with the
epipole and an arbitrary fixed reference line. The implemt@nt uses a line through the first vertex and the
epipole as a reference line. An example is given in Figure B six vertices of the polygon give rise to
five bins.

Figure 3.9 An example of a silhouette and epipole with edges and biawishThe bin contents are listed in Table 3.1.

Each bin must store the edges that a line through the epipodsevangle falls into the bin’s angular range
will intersect. Since the polygon is convex, each bin wilhtain exactly two edges. This makes populating
the bins easy.

The bins are traversed in order, and the polygon is travesgadltaneously, starting from the vertex with
the smallest angled( in the example). The current edge is added to the current hifalls within the bin’s
range, otherwise the current edge is updated by moving toekieedge (i.e., moving to the edge that shares
a vertex with the current edge). Once the vertex with theslstrgngle is reached, each bin will contain one

edge. The process is then reversed (the bins are traversedeirse order) to add the second edge to each
bin.

Table 3.1 shows the edges contained by each bin in the example
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| Bin | Range | Edges|

by | 81-62 | e, &
by | 62-63| e, &
bs | 63—04 | €, €63
by | 84—65 | €5, €4
bs | B65—0s | €5, 65

Table 3.1 An example edge-bin data structure formed from the sillieuand epipole shown in Figure 3.9.
Intersections between the Viewing Line Projection and the houette

Once the edge-bin data structure has been built, inteossctian be computed efficiently. The angle of the
viewing line projection is computed with respect to the refiee line. This is used to determine the bin
that contains the edges that intersect the viewing linesptimjn. If the angle lies outside the range of all of
the bins, then there is no intersection. Note that since igwing line projections correspond to a polygon
that is being traversed in another view, the appropriatésbirsually close to the most recently visited bin.
This means that foB bins, lookup is of constant time complexity, rather tharCffogB) search, when the
viewing line projections are processed in order.

It is possible that the following approach (not implemeitadhy further improve the simplicity and effi-
ciency of the algorithm. Instead of forming edge-bin datadtires, the intersection edges are determined
by starting with the most recently intersected edge. Sinegtojected viewing lines are computed in order,
the relevant edge will be found close to the most recentlgrésicted edge, and the entire polygon need not
be traversed. In other words, the silhouette polygon angthggon that generates the viewing lines are
traversed simultaneously.

Projecting Segments onto the Viewing Line

Once the intersection poingg andp, are known, they must be projected onto the viewing linBitandP;.

To easily compute the intersection of line segments spddifyedifferent silhouettes, the points are specified
asP, = C;+d1V, whereV = (C; —m)/||(C1 — m)|| so thatd; is the distance along the viewing line frada

to P;.

The viewing edge is then computed as the intersection ohtdhvals as indicated by all silhouettes other
than the silhouette corresponding to the viewing line. Beeaof noise, some interval intersections may
be empty; in these cases the viewing line does not contribuédpoint to the VEMH. (Figure 3.8 shows
point M as the midpoint of the viewing edge specified by the two sifittms for the viewing line under
consideration.)
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3.5 Measuring Silhouette Consistency

A consistent silhouette set is one that could have been peatlas the silhouette projections of a 3D object.
Geometrically, a silhouette set of an object is consistethiei intersection of the visual cones corresponding
to each silhouette projects exactly onto the silhouettdss iE the cone intersection projection (CIP) con-
straint. It is asufficientcondition for consistency, since the cone intersectiomisxample of a 3D object
that produces the silhouette set. It is alsoegessargondition, since any portion of a silhouette that is not
covered by the cone intersection projection provides egiittory information: the uncovered portion of the
silhouette indicates that the corresponding viewing ragsoacluded by an object, whereas the remaining
silhouettes in the set indicate that the 3D region corredipgnto these viewing rays is entirely empty.

Real silhouette sets are noisy: there will always be errep@ated with the camera parameters and the
segmented silhouette boundaries. Real silhouette sdtthariefore not, in general, be perfectly consistent.
It is therefore useful to formulate a measure of degreeof inconsistency of a silhouette set.

The concept of a degree of inconsistency for a silhouettis set important concept for this thesis:

1. By adjusting camera parameters to minimise the degrexonsistency, cameras candasif-calibrated

2. The degree of inconsistency can be used disgnosticto ensure that cameras have not been moved
or adjusted since calibration. (Although this thesis dagsanalyse this diagnostic, it formed a useful
tool during the data acquisition phase of the thesis prdject

3. It will also serve as a means for inferring whether two milbtte sets were produced by the same
stone (a match): if a relative pose can be found to align tleesiithouette sets so that the degree of
inconsistency is sufficiently low, then the two silhouett¢ssare classified as a match.

This thesis makes use of a degree of inconsistency basedtenapipolar tangents and the epipolar tan-
gency constraint. The use of epipolar tangencies for sittetbased pose optimisation was first considered
by Grattarola [54]. The method provides a computationdligient means of obtaining pairs of point corre-
spondences whose reprojection error provides a measuneafdistency [138].

Other measures of silhouette consistency such asiltheuette coherencef Hernandez et al. [39, 60] and
the silhouette calibration ratioof Boyer [14, 15] use more information contained in the sikbes, but
are computationally inefficient. These measures are thierafot of primary importance for the methods
developed in this thesis. However, they will be considerethé context of matching in Chapter 7.

3.5.1 The Epipolar Tangency Constraint

The epipolar tangency constraint is a geometrical comdttiaat applies to pairs of silhouette views (with as-
sociated pose and internal parameters): a line that istatgene silhouette and passes through the epipole
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must project onto a silhouette tangent in the opposite im&digh reference to an example (Figure 3.10),
this section describes how the epipolar tangency consitaimbe expressed in terms of the silhouettes and
the camera pose and internal parameters.

camera 1

baseline
C1
= P120 | e;z(—
=l e Po 2L paro | C2 Pio1 |-

ST b8 e | G &

" p211 P ol
4 P

camera 2

(@) (b)

Figure 3.10 Two views of the epipolar geometry of a scene: (a) a frontvyiend (b) a side view looking onto the scene in a
direction parallel to the baseline.

Figure 3.10 shows the same scene as shown in Figure 3.1, witthgome additional points and planes. The
line joining the two camera centr€; andC, is called thebaseline It pierces the image plane of Camera 1
ate;» and the image plane of Camera Z2gat The pointse;» andey; are epipoles. In the figure, the epipoles
are represented as small circles (projections of spheref)eomage planes.

The two planest andty that pass through the baseline and are tangent to the dush@s®. Provided that
the baseline does not pass through the object, there willvbestich planes for any object. The poifts
andP,, where the planes touch the object’s surface, are frontentq Since the planes pass through both
camera centres and graze the surface of the object, théefrguints project onto the silhouette boundary
in both views. The projection of a frontier point is the tangg point of a silhouette tangent that passes
through the epipole. A projection of a frontier point is thire termed aepipolar tangency The epipolar
tangenciegi20 andpo1p are projections oPo, andpi21 andp1; are projections oP;. (The notationpjjk

is used so thai indicates the number of the camera whose image plane thé Iggsron, j indicates the
number of the other camera of the silhouette pair, lamtblicates to which of the two frontier pointsjx
corresponds.)

The intrinsic geometry between the vieiand j is encapsulated by thed3 fundamental matrix;; [58]. If
X; represents the homogeneous coordinates of an image pmmt/fewi, andx; represents the correspond-
ing point in view j, thenx; is constrained to lie on the lirfg;;x; in view i so that

X Fjixj = 0. (3.1)

If the relative pose between vigvand viewj is described by a rotation represented by the m&tfizllowed
by a translation represented by the vedttirat transform points from the reference frame of canjecathe
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reference frame of camerathen aressential matrixcan be computed using
Eji = [tI«R. (3.2)

The antisymmetric matrit] . is computed from the translation vectos [ty,ty,t,]T using

0 —t, ty
te=| tz 0 —t |. (3.3)
~t, t O

The essential matrix can therefore easily be computed forea dknown pose. The fundamental matrix can
be computed from the essential matrix:
Fii = K TEK; (3.4)

where theK matrices store the internal parameters for camieaasl j so that
Uo

Vo |, (3 . 5)

f
K=1]0
0 1

o —+~ O

for focal lengthf and principal poin{uo, vp). This camera model assumes that pixels are square.

Figure 3.11 shows the epipolar tangents for each silhouretige of the duck example. Each line lies in

F21p210 F12p120
( P120 P210
et >921
P121 P211
F21P211 F12p121
(@ (b)

Figure 3.11 The epipolar tangency constraint: the epipolar tangamttes the silhouette at the projection of the frontier paist
shown in (a) and (b); the projection of this tangent onto thade plane of the opposite camera is constrained to coimdttiehe
opposite epipolar tangent.

a tangent plane containing a frontier point, and therefoustrproject onto the corresponding line in the
opposite image: this is the epipolar tangency constraintother words, in the noise-free case, the line
passing througle; andpijx is the same line as;ipjix.
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3.5.2 A Measure of Inconsistency Based on Epipolar Tangents

If there are inaccuracies in the silhouettes or the pose, ttieline passing throughy; andpjj will not, in
general, be the same line Bgpjik. Figure 3.12 shows the noisy case in which there are inacesr& the
assumed relative pose between the cameras. Note that pfudespare positioned differently to Figure 3.11,

€1

() (b)

Figure 3.12 Epipolar tangents with the projection of the epipolar tmg of the opposite view and incorrect pose information:
since the pose information is incorrect, the epipolar tatgydo not project onto one another. The silhouettes aregisent with
one another for the given viewpoints. The reprojectionrdg@a measure of the degree of inconsistency.

since the pose is incorrect. The projection of the oppositeara’s epipolar tangent is not exactly coincident
with the epipolar tangent on the image plane. Reprojectioore can be computed as a measure of the
inconsistency between a pair of silhouettes with an astmtipose value. The reprojection error is the
shortest distance from an epipolar tangency to the epifiolarf the corresponding point in the opposite

image. The figure shows the reprojection eriayg, di21, dr10 anddo 1.

The distancel between an epipolar tangenpyi and the projection of the epipolar line from the opposite
camera that passes through the tangency gintan be computed using the fundamental matrix, as stated
by Wong [138]:

Piik Fii Piik
V (Fipi)? + (Fipjio?
The expressionéFijpjik)3 and (Fijpjik )3 denote the first and second elements of the ve@gpjik)2. Note
thatpjjo andpjj, are vertices of the polygon representing the silhouette.

dijx = (3.6)

Wong’s definition of the reprojection error described by &ipn 3.6 is related to the Sampson approxima-
tion [58] that provides an estimate of the locations of twajgetions of a point from two noisy observations.
The Sampson approximation of the location of the frontidnipprojection is midway between the epipolar
tangency and the projection of the opposite epipolar tangkn alternative formulation that measures the
distance to the Sampson approximation from the epipolayetacy (or from the projection of the opposite
epipolar tangent) gives exactly half the value given by Eque3.6. Yamazoe et al. [141] describe a method
in which the locations of 3D points are explicitly modellddlowever, results are not compared with the con-
ventional method of using an error function based on Eqoai6. Some initial experimentation indicated
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that the method of Yamazoe et al. provides results that anesdlidentical to the those obtained with the

conventional approach for the camera setups covered ithigsés. Hartley and Zisserman [58] recommend
using the Sampson approximation, since it gives excellesilts in practice and removes the requirement
for 3n parameters to describe the locationsi@fontier points.

A measure of inconsistenayithin a silhouette set is the RMS (root mean square) value of albjegtion
errors (as specified by Equation 3.6) computed using albsétte pairs within the silhouette set. This is
referred to as the ET (epipolar tangency) error within thesiette set, and is used for calibration (Chapters 4
and 5).

For two silhouette sets and an associated relative poseasumeeof inconsistencgcrossthe silhouette sets
is the RMS value of all reprojection errors computed acrdissilaouette pairs in which one silhouette is
from each silhouette set. This is referred to as the ET exmsa the silhouette sets, and will be used to
optimise relative pose (Chapter 6).

This thesis makes use of the Levenberg-Marquardt [95] ndetthdanfer model parameters by adjusting the
parameter values to minimise ET error. This approach is imsséveral contexts through the thesis.

3.5.3 Epipoles Inside Silhouettes

In cases in which the epipole falls within a silhouette, tiedgror is not defined for the silhouette-epipole
pair. Epipoles lie within silhouettes when the baselinespaghrough the object.

Interestingly, a configuration in which baselines conmgrtwiewpoints all pass through the object allow
consistent viewpoints to be specified for arbitrary singdatour silhouettes. This is done by positioning
all viewpoints on a line so that the line passes through Blbaettes. By ensuring that the viewpoints are
sufficiently far apart, no silhouette will destroy the cotdpsfrom any other silhouette; the visual cone inter-
section thus provides an object that exactly projects dh&illaouettes. Figure 3.13 shows an example using
shapes considered by Bottino and Laurentini, who challeegders to determine consistent orthographic
views for three silhouettes: a square, a circle, and a tiegdd]. If the projection model is broadened from
an orthographic model to a perspective model, then consigiewpoints can be found for the three shapes
(and indeed any number of single contour silhouettes), Igilyp selecting viewpoints sufficiently far apart
on a common line that passes through the silhouettes.

The problem of the existence of trivial solutions, such &sdhe illustrated in Figure 3.13, is not an issue
for the methods considered in this thesis, since silhowsttsistency is never considered in cases in which
the pose of individual silhouettes can be freely adjustedthé cases in which poses are freely adjusted,
either (1) multiple silhouettes correspond to each camiess, vr (2) the pose of a silhouette set, rather than
a single silhouette, is adjusted.
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Figure 3.13 (a) A 3D shape with square, circular and triangular siltitmgefrom certain viewpoints. If viewed looking onto its
triangular face from afar, the silhouette boundary is a sgjaa shown in (b). As the viewpoint is moved towards the tyidar face,
the silhouette boundary begins to change to become morganir(c), until the boundary is a circle (d), and then becomese
triangular (e), until the viewpoint is sufficiently closettee triangular face that the silhouette is a triangle (f).

@

Nevertheless, it is still possible to obtain cases in whiahameters are adjusted so that the epipole lies
within a silhouette for certain view pairs. To prevent thenoer of residual values from changing within a
Levenberg-Marquardt step, these cases are identified, eegidaial value is chosen so that the mean square
value over all epipole-outside pairs is the same as the npeare value of all residuals. To ensure efficiency,
cases in which the epipole lies within the axis-aligned Mg rectangle of a silhouette are treated as if the
epipole lies within the silhouette.

3.5.4 Efficiently Locating the Epipolar Tangencies

Computing the ET error requires the polygon vertices thattangencies to be located. Since only outer
tangencies are used, they are computed from the convexdiule polygonal silhouette boundaries. Con-
vex hulls are efficiently computed from the boundaries uditedkman’s algorithm [92] which has a time
complexity ofO(n) for n-vertex polygons. It achieves its efficiency by assuming thput vertices lie on

a non-self-intersecting polygon, rather than in generaitjpms. Note that convex hulls need be computed
only once for each silhouette, whereas tangencies need torbputed repeatedly when pose or camera
parameters are adjusted within an iterative minimisatio&Toerror. This is why it is important to locate the
tangencies efficiently.

A simple method for locating the two outer tangencies wilpeet to an epipole and a convex polygon is to

visit each vertex and to check whether the edges arrivingesaving the current vertex are on the same side
of the line through the current vertex and the epipole. B thithe case, then the current vertex is a tangency.
Unfortunately, this simple method is computationally freéént.
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x<0|y>0 v=g-1 —o<v< —1
x<0|y<0|v=-1/(14g) | -1<v<O
x>0|y<0| v=1/(1-9) O<v<+1
x>0|y>0 v=g+1 +l<v< 4o

Table 3.2 Lookup valuev as a function ok, y andg = y/x, wherex andy are the vertex coordinates.

To speed up the location of tangencies, a method based amgstioe edge angle associated with each vertex
is proposed. (The edge angle is the angle of the vector frarh eartex to its successor—the edges are
directedand polygons are assumed to have vertices specified inaiticise order.) The method is appli-
cable to ET error computed using both orthographic and petiye camera models, but the implementation
is slightly different for the two camera models. Since the aéan orthographic camera model will be in-
vestigated in Chapter 7, locating tangencies with bothogptiaphic and perspective models will be covered
here.

Forming the Edge Angle Data Structure

A monotonic function of angle is computed and stored as to&da calls to the relatively computationally
expensive arctan function. A monotonic transform of thel@rgsufficient as angle values are only used for
ordering edges.

The monotonic function of angle is computed using the equatpresented in Table 3.2. The same approach
was used for efficiently computing viewing edges.

The lookup valuer of the successor edge for each vertex is stored in a sortediatbge container ( the €t
map data structure was used). This allows angle values to bessedénO(logn) complexity for am-vertex
polygon. Sincen is small (the order of 100), a hashing approach which wouthaD(1) access was not
used. (TheD(logn) retrieval was found to make a negligible contribution t@tetinning time in practice.)

Orthographic Imaging Model

In the orthographic case, the epipole is a direction, rathan a point. To determine the first tangency,
a vertex must be found whose predecessor edge angle is &asthth angle of the epipolar direction, and
whose successor edge angle is greater than the angle ofigudaemirection. If the angle of the epipolar
direction is greater than or smaller than all of the storegles) then the relevant vertex is the vertex whose
edge angles correspond to the greatest and smallest atigtess Caused by the discontinuity wbetween
—oo and+o). The located vertex is a tangency, since its two edges lib®same side of the line specified
by the vertex and the epipolar direction.

The second tangency is located by applying the same praeddiuthe direction opposite to the epipolar
direction.
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Perspective Imaging Model

The above method relies on the tangent direction being knavadvance: it is the same as the epipolar
direction. In the perspective case, the epipole is not atiine, and the tangent direction is therefore not
known in advance. Instead, an approximate direction is cheatpas the direction from the epipole to the
silhouette centroid. If the epipole is sufficiently far fraime silhouette, this will lead to the correct vertex
being located. However this is not guaranteed.

The located vertex must therefore be checked to determie¢henhit is a tangency. This is done by checking
whether its two edges lie on the same side of the line paskimoggh the vertex and the epipole.

If the vertex is not a tangency, then the direction from thpap to the vertex is used to find the next
candidate. The candidate direction therefore rotateselise until the tangency is found. Typically, the
tangency is found on the first iteration, but in cases wher@ffipole is close to the silhouette more than one
iteration may be required. An example is shown in Figure 3.14

@) (b)

Figure 3.14 Clockwise rotation of the candidate direction for findidge ttangency: (a) the initial candidate direction from the
epipoleeto the silhouette centroic the located vertea is not a tangency, so it is used to define the candidate dbreftir the next
iteration, (b) the located vertdxis a tangency, so the algorithm terminates.

Note that the tangency is always located, since the curi@mdidate direction always locates a candidate
vertex that is further clockwise than the vertex that spegithe direction. For any direction there are two
tangencies: one to the left and one to the right. Since thggpal vertices are ordered anticlockwise, the
rightmost tangency will always be selected. This is bectheseange of directions between the edges arriving
and leaving the rightmost tangency vertex includes oneishadrallel to the current direction, whereas the
range corresponding to the leftmost tangency vertex imdughe that is antiparallel. Since, from the point of
view of the epipole, a step to the right is always a clockwisa {since the epipole is outside the silhouette),
the tangency will always be located.
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Figure 3.15 Two outer tangencies, has a greater angular extent to the left (anticlockwise)@nldas a greater angular extent to
the right (clockwise) with respect to the epipole.

The second tangency is located by computing direction veftom the silhouette to the epipole, rather than
from the epipole to the silhouette as is used to locate thetdingency.

3.5.5 Determining Tangency Correspondences

To compute the ET error it is necessary to know which of the dwter tangencies in one image of a pair
corresponds to which outer tangency in the other pair.

The literature mentions two approaches to solving the spmedences: (1) the correspondence that leads
to the lowest ET error is selected [54], or (2) correspondsrare determined by knowing that cameras are
always upright: one pair will occur at the top of the image andther pair at the bottom [60].

Since there is no prior knowledge of what is upright for theneea views considered in this thesis, this
constraint cannot be used to determine correspondences.

Instead of determining correspondences by selecting tinevith the lowest ET error, this section demon-
strates that epipolar tangency correspondences can lrendetd by considering the camera poses alone.
This provides a simpler algorithm.

A Method for Determining Correspondences

Figure 3.15 illustrates the two epipolar tangencies coegirom a silhouette and an epipole. From the point
of view of the epipole, one of the tangencigswill have a greater angular extent to the left (anticloclayis
and the other tangengg will have a greater angular extent to the right (clockwigg).alternative definition

is that the epipole lies to the right of silhouette normabgtand to the left of silhouette normal gt.
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Let the tangencies from the firstimage e and pra, and those from the second pgs and pre. If exactly
one camera is behind the other camera (i.e., if one camei@®rdinate specified in the other camera’s
reference frame is less than zero), then the corresponsl@meép, a, pL.g) and(pra, Pre)- If both cameras
are facing each other or if both cameras are behind one anotieecorrespondences afp.a, prs) and
(pra, PLB). Examples illustrating the different configurations arevgh in Figure 3.16.

Since orthographic cameras are at infinity, they are neMeindeone another, and the correspondences are
therefore(pLa, Pre) and(pPra, PLB)-

An Explanation of the Method

Consider a frontier poir® that is generated by CamerasindB. The surface normal of the frontier point is
used to define the up direction, so that it can be specifiedhehatcamera lies to the left or to the right of a
line passing through the other camera and the frontier pbigures 3.17a and 3.17b illustrate points in the
plane containingd, B andP. In this caseA lies to the right of the lind°B, as the normal & is facing out of
the page.

If CameraB is oriented so thaA is in front of Camera (as illustrated in Figure 3.17a), then the epipaig
(the image ofA) is on the same side gz (the image ofP) asA is of P. (In the example illustration, it is
to the right). This is because bothandA are in front of Camer®. The pointP is always in front of both
cameras, since it is visible to both cameras.

If CameraB is oriented so thaf is behind Camer® (as illustrated in Figure 3.17b), then the epipeia
(the image ofA) is on the opposite side gis (the image ofP) asA is of P. This is because the ray frof
comes from behind CameBaand strikes the image plane from behind.

The handedness of an epipole with respect to the tangensgdsta specify the handedness of the tangency.
This is illustrated in Figures 3.17c and 3.17d. In the cadegire 3.17c for example, the relevant epipole is
pB = pR the tangency for whiclpg lies to the right of the epipole.

(a) (b) (©)

Figure 3.16 Examples illustrating (a) two cameras each behind therofbgone camera behind and one camera facing, (c) two
cameras both facing the other. Dashed lines represent aattra’'sz = 0 plane and arrows specifying the camera directions depart
from the camera centres and lie on the optical axes. In alls;dake external scene pofis visible to both cameras.
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(@) (b)
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€sa
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(© (d)

Figure 3.17 CameraA s to the right ofB with respect to the lin®B and with the normal to frontier poiri facing upwards (out of
the page): (a) Cameiis oriented so thad is in front of it; (b) Camera is oriented so thah is behind it; (c) the image seen by
B for the configuration in (a); (d) the image seenfor the configuration in (b). The image plane®fs indicated with a dashed
line. Note that cameras are modelled with the image planeirt bf the camera centre.

Since the handedness Afwith respect toPB is the opposite oB with respect taPA, the corresponding
tangencies have opposite handedness if both cameras amnirof each other. However, if exactly one
of the cameras is behind the other, the handedness of one darnlgencies flips, and the corresponding
tangencies have the same handedness. If both of the camerashénd the other, then the handedness of
both of the tangencies flips, and the corresponding tangerwve opposite handedness (as for the case
when both cameras are in front of one another).
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3.6 Summary

This chapter has covered the main aspects of the geometithofistte sets that will be used throughout
this thesis. First, the visual hull, a widely-used appradion of 3D shape computed from silhouette sets,
was introduced. Next, it was shown that viewing edges imposistraints on the shape of the object that
produced the silhouettes. Viewing edges were demonsttatgbvide both a means for computing bounds
on the longest and shortest diameters of a stone, and forutorgpan approximation to the convex hull
of the 3D shape of the stone, the VEMH. In later chapters, tB&H will be used for pose optimisation,
approximating shape properties, and recognition tasks.

The ET error, a measure of silhouette inconsistency thased on the epipolar tangency constraint was in-
troduced. The ET error plays an important role in the calibreand recognition methods that are developed
in the chapters that follow. Efficient algorithms for compgtET error that incorporate some new ideas have
been described.
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Chapter 4

Multiple Views from Mirrors

4.1 Introduction

Multiple silhouette images of particles for silhouetteséd analysis are typically captured using a multi-
camera setup [108]. Such equipment is often not readilylablai and a simpler acquisition system may be
beneficial for early investigations. For this reason, a nsgtup using only two plane mirrors and a single
digital camera was used for initial data acquisition.

In addition to providing a means for capturing calibratddaiette sets of particles, the method can be used to
create 3D visual hull models of objects for other applicgagisuch as 3D multimedia content creation. Other
shape-from-silhouette methods [91,97,99] for 3D contestion typically make use of calibration objects,
turntables, or synchronised multi-camera setups. Theoseapsetup provides a simple way of creating 3D
multimedia content that does not rely on specialised eqgeipnThe setup need not be accurately positioned,
since self-calibration is used to determine all pose aretiial parametets

Two mirrors are used to create five views of an object: a viewatly onto the object, two reflections, and
two reflections of reflections (see Figure 4.1). The images@rented into foreground and background
regions producing an image containing five silhouette sufges.

The method presented in this chapter describes how theaitemmera parameters and pose associated with
each of the five silhouette views can be determined from thewgétte outlines alone. This means that self-
calibration is possible: no calibration markers are regpliiThe method therefore allows a 5-view visual hull
model to be computed from a single snapshot of the scene.

By moving the camera, yet keeping the object and mirrors énstime positions, silhouettes from different
viewpoints can be captured. The relative pose of the canagrbe computed for the different shots, allowing

*Matlab software to perform the self-calibration is avaliéefvom http://www.dip.ee.uct.ac.za/ ~kforbes/
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Figure 4.1 The two-mirror setup used to capture five views of an objeet single image.

silhouette sets with an arbitrary number of silhouettesa@dptured. Figure 4.2 shows an example of two
images of a scene captured from different viewpoints, afigva 10-view silhouette set to be formed.

Another approach is to change the pose of the object betwetat® capture different viewpoints. Chapter 6
explains how multiple 5-view sets can be merged into a sisete

Part of the work described in this chapter was presented asfarence paper [44]. This is an extension of
earlier work that was presented as another conference pbfjeilhe earlier work assumes an orthographic
projection model and requires a dense search of parametee $p determine initial estimates. The method
described in this chapter improves on this earlier work byvjoling closed form solutions for the initial
parameter estimates using a perspective camera model.

4.2 Related Work

The computer vision literature describes various appresébr capturing silhouettes of an object from mul-
tiple viewpoints so that shape-from-silhouette recorsion can be applied. Several approaches make use of
self-calibration: the silhouettes themselves are usedtimate camera pose and internal parameters. Rather
than assuming general poses for all silhouettes, theseages typically make use of problem-specific con-
straints such as circular motion, known orientation, od@og@r viewing directions. The method described in
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Figure 4.2 Two images of a two-mirror setup positioned so that five @ex/the object can be seen. Note that the camera has
moved between shots, but the mirrors and object have notanove

this chapter also makes use of problem specific constraiis.constraints in this case are imposed by the
mirror configuration that is used to produce multiple views.

Wong and Cipolla [139] describe a system that is calibratethfsilhouette views using the constraint of
circular motion. Once an initial visual hull model is constied from an approximately circular motion
sequence, additional views from arbitrary viewpoints canadded to refine the model. The user must
manually provide an approximate initial pose for each aoldliti view which is then refined using an iterative
optimisation. Their method of minimising the sum-of-squagprojection errors corresponding to all outer
epipolar tangents is used in this chapter to provide a refoadion.

Okatani and Deguchi [101] use a camera with a gyro sensoraédhf orientation component associated
with each silhouette view is known. An iterative optimisatimethod is then used to estimate the positional
component from the silhouettes by enforcing the epipolagéacy constraint.

Bottino and Laurentini [11] provide methods for determmiviewpoints from silhouettes for the case of
orthographic viewing directions parallel to the same plaiigis type of situation applies to observing a
vehicle on a planar surface, for instance.

Many works describe the use of mirrors for generating migltigews of a scene. For example, Gluckman
and Nayar [53] discuss the geometry and calibration of arviroer system using point correspondences.
Han and Perlin [55] use a kaleidoscope to simultaneously sisurface from many directions. This allows
the bidirectional texture function to be computed withowgamanical movement. Hu et al. [62] describe
a setup similar to ours, however they use constraints inthbgeboth the silhouette outlines and point
correspondences for calibration.

Huang and Lai [63] have also extended our original two-misetup [47] to use a full perspective camera
model (as described in this chapter). However, their amprégdifferent and was developed entirely inde-
pendently of our work (and was published subsequent to batloiiginal method and our full perspective

method [44]). Their method of solving for the orientatiosshiased on the equations involving the mirror
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normals, and is similar to our original algorithm for an @dginaphic projection model. Huang and Lai's
method requires a least squares cost function to be minintisestimate the focal length. This means that
an initial estimate of the focal length must be provided. Tethod described in this chapter provides a
closed form solution for the focal length.

Moriya et al. [96] describe an idea that is related to the vetmkcribed in this chapter. Epipoles are computed
from the silhouette outlines of three shadows of a solid oash a plane, and are shown to be collinear.
The authors do not, however, mention any applications thatoe derived from their observed collinearity

constraint.

4.3 Epipoles from Bitangents

This section deals with the case where a camera views antabjdcits reflection. It is shown how the
epipole corresponding to the virtual camera (the refleatithe real camera) can be computed directly from
the silhouette outlines of the real object and the virtugctin the image captured by the real camera. This
result will be used to calculate the positions of epipolegtie two-mirror setup.

Figure 4.3 shows an example of a camera observing a realt@jddts reflection in a mirror. The virtual
camera is also shown in the figure. Consider a plan¢hat passes through the camera cenigandCy

virtual object

R/1

real object Pr1

R/2 &R

virtual camera

€R
L Pro f?‘ \Y

Cr® Prv1

Lr2

Prv2 ;

real camera PRRL mirror
Prr2

Figure 4.3 A camera viewing an object and its reflection. The epipoleasponding to the virtual camera can be computed from
the silhouette bitangentsy; andLgo.
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and touches the real object at the pdtat. By symmetry,l; will touch the virtual object at the poirg,;
which is the reflection oPgr;. Sincell; is tangent to both objects and contains the camera cebyasd
Cv, Pr1 andRy; are frontier points. They project onto the silhouette meti on the real image at poirggr.

and prvi. The pointsprrr, Prvi and the epipolery (the projection ofCr into the real image) are therefore
collinear, since they lie in botAl; and the real image plane. Observe that the bitanggnpassing through
these three points can be computed directly from the silt@weaitiines: it is simply the line that is tangent
to both silhouettes. Another bitangelng, passes through the epipole and touches the silhouetteseon th
opposite side thr;. These tangency points lie on a pldigthat is tangent to the opposite side of the object
and passes through both camera centres. Provided thatjded dbes not intersect the line passing through
both camera centres, there will always be two outer epifgalagentd_r; andLg, that touch the silhouettes
on either side.

The position of the epipolery can therefore be computed by determinlgg andLg, from the silhouette
outlines: it is located at the intersectionlgf; andLg,. Note that the epipole is computed without requiring
knowledge of the camera pose and without requiring any mmimespondences.

Also note that, by symmetry, the real camera’s silhouete\of the virtual object is a mirror image of the
virtual camera’s silhouette view of the real object. Thaailette view observed by a reflection of a camera
is therefore known if the camera’s view of the reflection & tbject is known.

4.4 Two-Mirror Setup

Figure 4.4 shows an example of a two-mirror setup that is tsedpture five silhouette views of an object
in a single image. The camera is centredCatand observes a real obje®k. The camera also captures
the image of each of four virtual objec®,1, Ov2, Oy12, andOy,;. ObjectOy; is the reflection 0g in
Mirror 1; Oy is the reflection ofOg in Mirror 2; Oy12 is the reflection 0fdy; in Mirror 2; andOy» is the
reflection ofOy 5 in Mirror 1.

The proposed method requires six virtual cameras to bederesl. The virtual cameras are reflections of
the real camer&g. The virtual camera€y 1, Cy2, Cy12, andGCy»; are required, as their silhouette views of

the real object are the same as the silhouettes observed bgahcamera (or reflections thereof). Since
silhouettes from the real camera are accessible, the sittesuobserved by the four virtual cameras can be
determined. Each of the five cameras’ silhouette views ofdlaé object can then be used to compute the
five-view visual hull of the object.

The virtual camera€y 121 (the reflection ofSy12 in Mirror 1), andCy 212 (the reflection ofSy»1 in Mirror 2)
are to be considered too, since it turns out that their epgpchn be computed directly from the five silhou-
ettes observed by the real camera. These epipoles, togetheihe epipoles from the virtual camer@g;
andCy» can then be used to calculate the focal length of the camera.
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Figure 4.4 Mirror setup showing one real and four virtual objects, and real and six virtual cameras.

4.5 Analytical Solution

This section presents a method to calculate the focal lesmgthprincipal point of the camera and the poses
of the virtual cameras relative to the pose of the real carterdoe five camera views in an image. Next, a
method for determining camera motion between snapshotesepted. This allows all silhouettes from all
images to be specified in a common reference frame. Closeddolutions in which the required param-
eters are determined from the silhouette outlines alon@randgded. Silhouette outlines are represented by
polygons, and pixels are assumed to be square.

First, it is demonstrated how lines that are tangent to mdisihouettes can be used to calculate the position
of four epipoles corresponding to four virtual cameras. phecipal point is constrained by the epipoles to
aline in each image; the intersection of the lines is thegiuad point. Next, it is shown how the focal length
is a function of the relative positions of these four epipol®nce the focal length is known, it is shown
that mirror and camera orientation are easily determineah the positions of two epipoles. The positional
component of the poses can be computed using the epipolgereyn constraint. Finally, it is shown how
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the camera poses between shots are constrained by thertqrsséions of the mirrors with respect to the
object.

4.5.1 Four Epipoles from Five Silhouettes

Here, it is shown how the epipoles are computed from pairdliobigsettes using the result explained in
Section 4.3: the epipole corresponding to a camera’s riftecn be computed from the camera’s silhouette
image of an object and its reflection by finding the intersectf the two outer bitangents. Figure 4.5 shows
how the epipolesy1, ey2, ey121, andey,1, are computed from the outlines of the five silhouettes oleskby

the real camera. The distanagd, andc between the epipoles will be used for computing the focajtien
The outlineygg corresponds to the obje€r, andyry1 corresponds t®y1 which is the reflection 0Og in
Mirror 1. The intersection of the pair of lines that are tamg® bothyrg andyry: is therefore the epipole
ev1, sinceCy1 is the reflection oCx in Mirror 1. The two lines that are tangent to bagk,» andyry»;1 also
meet atey1, sinceOy 1 is the reflection ofOy, in Mirror 1. Similarly, the pairs of lines that are tangent to
bothyrr andyry2, and toyry1 andyryiz meet atey».

Figure 4.5 Computing epipolesy1, ev2, év121, andey212 from the silhouette outlines in an image.

ConsiderCg observingOy1. ObjectOyo; is related toOy1 through three reflections. Obje€t,; must be
reflected by Mirror 1 (to ge©g) and then Mirror 2 (to ge®y2) and then again by Mirror 1 to g€l/21. The
effect of these three reflections can be considered to begkesieflection. Applying the triple reflection to
Cr givesCy121. The two lines that are tangent to bogs,; andyryo1 therefore meet ady121. This is again
because a camer@y) is observing silhouettes of an obje€\[(;) and its reflection®y12), so the projection
of the camera’s reflectior(;121) can be computed from the silhouette bitangents. Simijlénky two lines
that are tangent to botfgy, andyryi2 meet atey210.
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Note that the epipolesy, ev2, /121, andey,1o are collinear, since they all lie in both the image plane ef th
real camera and in the plank: in which all camera centres lie.

4.5.2 Focal Length and Principal Point from Epipoles

It is now shown how the focal length is computed from the pas# of the four epipolesy1, 62, ev121, and
ey212. This is done by considering the positions of the cameraeeiin the planélc.

First, two new mirrors, Mirrors A and B, which do not corregdoto physical mirrors in the scene, are
introduced. This approach makes the problem of calculatiegfocal length tractable. Mirror A has the
same orientation as Mirror 1, but is positioned so that ispasnidway betweegy; andCr (see Figure 4.6a
in which the positions of points iflc are shown). The poird,; is therefore the reflection @ in Mirror A.

Cvi21

i G . Mirror 2 | I{)T:r?(f
image plane Mirror B
Mirrori €v1 €v121 €v2 Cr
MirrorA Cr a b c

(a) (b)

Figure 4.6 Diagrams showing (a) the intersections of Mirror 1, Mirdrand Mirror 2 with M along with the positions of the
cameras and epipoles, all of which liefiig, and (b) computindg and py from the four epipole®y1, ey2, ey121, andey212

PointE is the reflection o&,1 in Mirror 2, andF is the reflection o in Mirror A. Note thatF lies on the ray
passing througle,121 andCg. Also note that will stay on this line if the position (but not the orientatjo
of Mirror 2 changes. This is because triangts€rCy1D and ACre,1G are similar.

Figure 4.6b shows the positions of the epipoles@nth MN¢. The distances, b, andc between the epipoles
(as shown in the figure) are used to compute the distdndeetweenCr and the image plane in the plane
Mc. The distancen is then used to calculate the focal length. The figure alsavshdirror B which has
the same orientation as Mirror 2, and is positioned midwawbenCg ande,,. The line joiningey, to its
reflection in Mirror A meets Mirror B at poin which projects ont@y212.
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The triangleAHe,,Cr is similar to ACrey1G, the line segment fromy 1,1 to ey2 is of lengthc, and the
line segment fromey1 to ey121 is of lengtha+ b. This indicates that the ratio of the sidesAfHe,,Cg to
ACrey1Gisc: (a+b). This means thad(ey1,G) = d(Cr,&)(a+b)/c. (The notatiord(x,y) indicates the
distance betweexandy.)

Similarly, the triangleAKey1Cr is similar toACgrey2J, the line segment frora,; to ey212is of lengtha, and
the line segment fromy,12 to ey is of lengthb + c¢. This indicates that the ratio of the sides/oKe,1Cg to
ACgrey2Jisa: (b+c). Therefored(ey,,J) = d(Cr,ev1)(b+c)/a.

This allowsd(Cg, ey1) to be written in terms ofl(Cr, ev2), sinceACrey2J is similar to ACrey1G:

d(Cr,ev1) = Ve (Cchcblab()a+ b)d(CRA/Z)- 4.1)

The sides ofACrey1G are now known up to a scale factor.

The angle/Crey1G = o + 3 can be computed using the cosine rule:

N (c+b)a(a+b).

cofa+pB)=1/2 (c1b)(at+b

(4.2)

The cosine rule can be used to determine the sidésepiCreyo. (The angleey1Creyo = 180 —a —f3.)

The value off; can now be stated in terms afb, andc (with the help of the Matlab Symbolic Toolbox for
simplification):

(a+b+c)/ac(3ac+4ab+4bc+ 4b2)
fn=1/2 .

4.3
a?+ab+c2+bc+ac (4.3)
The point closest t€x on the line containing the epipoles, is
2a+2b+c)a(a+b+c —
on = v+ 1/2¢ )a( ) evo—en @)

a?+ab+c?+bct+ac |leva—evi||

The line passing througbn and perpendicular to the line containing the epipoles gasseugh the principal
point pp. The principal point can therefore be computed as the iet#i of two such lines from two images
of the scene. (If the principal point is assumed to lie at thage centre, then a single snapshot could be
used.)

The focal length (the distance fro@k to the image plane) can now be calculated frpf the principal
point pg and fn (see Figure 4.7):

f = /2~ [lpo—pnl 2 (4.5)
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Figure 4.7: View of the camera perpendicular to both the image plandand

45.3 View Orientations

Once the focal length of the camera has been calculated,igheorientation can be computed relatively
easily. The mirror normal directions; andm, are computed from the focal length, the principal pqignt
and the epipoles,; andey;:

ml:_[e\/lf—por mzz_le\/zf—pol. (4.6)

A 3 x 3 matrix R that represents a reflection by a mirror with unit nornfak= [my,m,,m," is used to
calculate view orientation:

—Mg+mg+me —2mam, —2mym,
R= —2mamy m — m§+ me —2m,m, ) 4.7
—2mym, —2mm,  mi+nmd—ng

45.4 \View Positions

The pointGy; is constrained to lie on the line passing throwgh andCg. Similarly, the pointGy; is
constrained to lie on the line passing throwgh andCg. Since absolute scale cannot be inferred from the
image (if the scene were scaled, the image would not cha@ge)is fixed at unit distance fror@g. The
only positional unknown across the entire setup is now thgitipa of C,» on the line passing througdy
andCg.

To solve forw, the distance frorty to Gy, the epipolar tangency constraint is used. This constramiires
that a tangent to a silhouette outline that passes througleplpole must be tangent to the corresponding
point in its projection into the image plane of the other vi@ke relationship between the silhouette views
of camera$y, andCy» is used to enforce this constraint.
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The poses of the camer&,; andCy, are specified by 4 4 rigid transform matrices from the reference

frame of the real camera:
R t
M= , 4.8
(OT ) @)

where the translational componetis given byt = 2(mypx + my, py + myp;) (my, m,,m;) T and(py, py, p2) " is
a point on the mirror.

The matrixM{M; 1 represents the rigid transform from the reference fram@,efto that ofGy1.

The pointpy2 is one of two outer epipolar tangencies formed by lines pasiroughey o1 (the projection
of Cy1 onto the image plane of cameZg,) and tangent to the silhouette observed by the cagra

The point py1y2 is the projection ofpy, into cameraCy1. It must correspond tgy;, one of two outer
epipolar tangencies formed by lines passing throegk, (the projection ofC,» onto the image plane of
cameraCyy).

The epipolar tangency constraint is expressed as

(Pviv2 X evavz) - pv1 =0, (4.9)

wherepyiva, ev1v2, andpy: are represented by homogeneous coordinates. In other vibedéne passing
throughpyiv2 andeyy2 must also pass througsy ;.

Equation 4.9 can be specified in termgof, pv2, the computed orientation and camera internal parameters,
andw. The Matlab Symbolic Toolbox was used to determine a saiuiio w (the equation is too large to
reproduce here). Unfortunately, the values of bggh and py, are unknown, since the epipoles from which
they may be computed are functions of the unknawn

The values ofpy1 and py»2 can be determined by exhaustive search, by finding the polygaex pair that
fulfils the epipolar tangency constraint. Instead, the rfeedn exhaustive search is removed by using a
parallel projection approximation to determine approxeneorrespondences. The tangencies are selected
as the support points for outer tangent pairs that are patalthe projected viewing direction. Unless the
camera is very close to the object, this method selectsrdlteesame vertices, or vertices very close to the
true tangencies under a perspective projection.

4.5.5 Combining Five-View Silhouette Sets

The calibration procedure described above allows five gsékte views from one image to be specified in a
common reference frame. The pose and internal parametére &dur virtual cameras and one real camera
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are known. The silhouettes observed by these cameras atealen: the silhouettes observed by the virtual
cameras are those observed by the real camera of the cordéspwirtual object.

The next step is to specify the silhouette sets from two orentoiages in a common reference frame. This
is easily achieved, since the mirror poses are known withe@sto the real camera for each image. The
five-view silhouette sets are aligned by aligning the msracross sets. There are two additional degrees
of freedom that the mirrors do not constrain: a translatitoma the join of the mirrors, and an overall
scale factor. These are approximated using the epipolgeteny constraint and a parallel projection model
(as for computingw): each five-view silhouette set is scaled and translatedgatbe mirror join so that
outer epipolar tangents coincide with the projected tatggieom silhouettes in the other silhouette set. Each
silhouette pair between silhouettes in different setsipges/an estimate of translation and scale. The average
result over all pairings is used.

4.6 The Refined Self-Calibration Procedure

The method described in Section 4.5 provides a means for utimgpall calibration parameters. However,
better results are obtained if parameter estimates aredefinseveral steps. This is done by adjusting
the parameters to minimise the sum-of-of square distanewgelen epipolar tangencies and corresponding
projected tangents using the Levenberg-Marquardt metfibd.geometry of the problem naturally allows
for parameters to be decoupled from one another, allowimgmigation to be applied to small numbers of
parameters at a time.

The first step of the procedure is to determine which silltesetorrespond to which camera views for each
of the five silhouettes in the image. This is done by orderirgfive silhouettes along their convex hulls, and
then considering the five arrangements. The four epipmlese,», ey121, andey,12 are computed for each

of the five possible arrangements. The lowest sum-of-saliatances between silhouette tangents passing
through the epipoles and tangents on the correspondingusittes is used to select the correct arrangement.

With noise, the tangent intersections used to calculatdaimeepipoles will, in general, produce epipoles
that are not collinear. The epipoleg; andey, each lie at the intersection of four tangents. In the presenc
of noise, the four tangents will not intersect at a commomidtor a refined estimate, the positions of the
four epipoles are parameterised using only six degreegeflétm, so that the epipoles are constrained to be
collinear. The sum-of-square distances from tangencytptinthe corresponding tangents generated by the
opposite silhouette is minimised. The tangents pass thrtheyappropriate epipole and touch the silhouette.
To form a starting point (initial estimate) for the minimiigan, the tangent intersections are computed, and
the points closest to an orthogonal regression line thrdliglintersection points are used.

Focal length and principal point values are then computeddoh image, averaged, and adjusted to minimise
reprojection error. The unknown positional component ispoted next for each image. Parameters are then
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adjusted by minimising reprojection error using all polsikilhouette pairings between silhouettes within
each set.

Finally, the five view sets are merged into a single largesdeacribed in Section 4.5.5. A final minimisation
adjusts all parameters simultaneously to minimise the sfiaguare distances across all silhouette pairings.
There are 1K(5k — 1) distance values fdt input images.

4.7 Experiments

4.7.1 Qualitative Results from Real Data

Qualitative testing of the proposed self-calibration roelttvas carried out using the two 2592944 images
of a toy horse shown in Figure 4.2. The five silhouettes in éaaye were determined using an intensity
threshold.

Figure 4.8 illustrates the bitangents and epipoles condpfiten one of the two input images. Poses and

Figure 4.8 Computed bitangents and epipoles overlaid on one of the inpages of a toy horse.

internal parameters were computed from the positions oftfipoles in the two input images using the
methods described in this chapter. Visual hulls were coatpériom the silhouette to provide a qualitative
assessment of the 3D shape reconstructions that one cam wiitathe two-mirror setup.

The resultant visual hull model is shown in the third colunfirigure 4.9. The figure also shows visual hull
models created using only the five silhouettes from eacheninttages. This demonstrates the improvement
in the quality of the model obtained by merging the silharistits. Note that both five-view visual hulls have
regions of extra volume that are not present in the ten-viewaV hull.

The angle between the mirrors was computed to b& d8grees. The focal length was computed to be 2754
pixels and the principal point located @t306981). This compares with values of 2875 afit297 958)
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Figure 4.9 Two views of the visual hull of the horse formed from the eillettes in image Ii¢st columr), the silhouettes in image
2 (second colump and all ten silhouetteghird columr).

computed using a checkerboard calibration method (Je&@s-Bouguet’s Camera Calibration Toolbox for
Matlab). Note, however, that a direct comparison of indigildparameters does not necessarily provide a
good indication of the accuracy of the calibration paramset@he calibration parameters should provide
an accurate mapping from 2D image points to 3D riaythe volume of interestThe interplay between
the different parameters can result in different paramsdés varying to some degree in magnitude, yet still
providing a good mapping in the volume of interest. A diffege in principal point location can largely
be compensated for by a difference in translation parasefi@rinstance. A more meaningful measure of
calibration parameter quality using teihouette calibration ratias described in Section 4.7.2.

Figure 4.10 provides further qualitative results, showirsgial hulls of various objects computed using the
proposed two-mirror setup.

4.7.2 Images Captured with a Moving Camera
Ball Images

To provide a quantitative evaluation of the viewpoint piosis provided by the two-mirror setup, two images
of a ball bearing were used. Since the imaged object is of knslwape (it is spherical), it is possible to
guantify the geometrical constraints that its silhoueittgsose on its 3D shape.

Two images of a ball were captured from two viewpoints using two-mirror setup (see Figures 4.11a
and 4.11b). Self-calibration was applied to the two imaggisagithe method described in this chapter.
The 3D position and diameter of the sphere were then estihiateterative optimisation: the sum-of-

square distances between the projected ball and the palygonndary vertices of the observed silhouettes
was minimised using the Levenberg-Marquardt method. TFheried sphere parameters and calibration
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Figure 4.1Q Visual hulls computed using the proposed two-mirror setoput images are shown in the to the left, and the resultant
visual hulls are shown to the right. From top to bottom: a @ufmy locust, a toy lion, and a piece of gravel. Black velves waed
as a background for the cup and the locust, whereas a backlaghused for the lion and the gravel.
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Figure 4.11 Shape inference from silhouettes of a ball bearing usiegwo-mirror setup: () first input image, (b) second input
image, (c) ten viewpoints corresponding to the ten obsesilbduettes, (d) synthetic 5-view visual hull correspamgiio the first
input image (e) synthetic 5-view visual hull correspondiathe second input image, (f) synthetic 10-view visual balresponding
to both input images, (g)—(i) distributions of bounds of themeter computed over all directions as a proportion ofridiameter.
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parameters were then used to generate exact syntheticedifegrojections of the sphere that corresponds
to the real data. This allows investigation of the inherestirgetrical limitations of the extent to which 3D
shape can be investigated from silhouettes using the tvigetup. In other words, the limitations that
exist in the absence of noise can be investigated.

Results are presented in Figure 4.11. The ten silhouettetsired in the two images provide ten well-
distributed viewpoints (Figure 4.11c).

The second row of the figure shows visual hulls computed filoenbtview silhouette sets from the images
considered individually, and from the 10-view silhouett¢ssof both images considered together. The cone
strip components are coloured according to the correspgriimera view. The 5-view visual hull from the
first image is 105.3% of the sphere volume. The 5-view visudlifrom the second image is clearly a poor
approximation to the sphere, and is 149.8% of the spheren@mlNevertheless, the 10-view visual hull is
only 101.2% of the sphere volume, so both silhouette setemghificant contributions to carving away
volume that is not part of the imaged object. (Since exahbaittte sets are used, the computed visual hull
cannot be less than 100% of the sphere volume.)

The last row of Figure 4.11 quantifies the geometrical litiotas that the three silhouette set impose on the
diameter of the imaged object over all directions. (Coverafjall directions was approximated by con-
sidering directions specified by six icosahedron subdinisi) The plots indicate that the 5-view silhouette
set corresponding to the second image does not providedigtstraints on object shape. For instance, the
upper bound on the diameter is 250% of its actual value in sdineetions. Since both the upper and lower
bounds on the diameter in a given direction are closer to 1fifi%he 10-view silhouette set, it provides
tighter constraints on the shape of the imaged object ththeredf the 5-view silhouette sets.

Gravel Images

Two images were captured for each of twenty pieces of grasiabuhe two-mirror setup. Figure 4.12 shows
an example.

Although the primary purpose of capturing the data set wagetwerate synthetic data based on real data,
the real data also allow the repeatability of the estimatdib@tion parameters to be quantified. Results
that quantify repeatability are presented in Table 4.1. Miveors and the camera internal parameters were

\ | mirror angle [degrees] f [pixels] | uo [pixels] | vo [pixels] |
mean 74.605 3862.7 653.55 467.6
standard deviatior] 0.017766 51.499 29.995 24.929

Table 4.1 Mean and standard deviation for parameter values compugiad 20 different stones. Results are shown for the angle
between the mirrors, the focal lengthand the principal poinfup, Vo). Two images from different viewpoints were used for each
stone.
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Figure 4.12 Example of two images of a piece of gravel.

fixed during the capture of 40 images of the 20 pieces of grametreas the camera was held by hand and
moved between shots. The estimated internal camera pamantend to vary from set to set (for instance
the coefficient of variation of the focal length is 1.3%). §biccurs because small variations in these values
can largely be absorbed by camera pose parameters wHilmatiitaining an accurate image point to 3D
ray mapping in the volume of interest. The angle betweenarsrcomputed over twenty calibrations has a
standard deviation of less th&eoth of a degree.

Synthetic Data

To investigate the sensitivity of the method to noise, sgtithimages were used. This allows the exact
values of calibration parameters to be known. To ensurer#adistic parameter values were considered,
the synthetic images were based on the real images of thelgfaxact polygonal projections of the ten-
view polyhedral visual hull of the gravel were generatedhgshe output provided by the real images. This
provides an exactly consistent set of silhouettes.

Quantisation noise was introduced by rendering the polsiysithouettes, first at the original image resolu-
tion (2592x 1944), and then at successively lower resolutions.

Boyer [14] introduced the silhouette calibration rafioas a measure of the combined quality of silhouettes
and camera parameters. Ideally, some point on any viewingra silhouette must intersect all- 1 other
visual cones of the-view silhouette set. The ratio of the actual maximum nundbémtersections for points
on the ray ton— 1 is a measure of consistendy; is the mean value for all rays from all silhouettes. A
measure of inconsistency is given by-TC,.

Figure 4.13 shows plots of 1 C, versus the degree of resolution reduction for the compuéedeca pa-
rameters and quantised silhouettes. Results are also shitwthe computed camera parameters and exact
silhouettes, as well as exact camera parameters and aqdailaouettes. The plots show that without
refinement, the poor accuracy of the camera parameters isategrcontributor to inconsistency than the
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guantisation of the silhouettes alone. However, for thaeegficamera parameters, the quantised silhouettes
and exact camera parameters are more inconsistent tharatiteséhouettes and the computed camera pa-
rameters, demonstrating the accuracy of the refined ctbhrenethod. In other words, the quantisation of
the silhouettes is a greater contributor to inconsistehay the camera parameters computed with refinement
from the quantised silhouettes.

4.7.3 Images Captured with a Fixed Camera

Silhouette sets captured using a freely moving camera diteated up to an unknown scale factor. This
means that dimensionless quantities such as the ratiostasgecify particle elongation and flatness can
be estimated from silhouette sets, but properties thaineqbsolute scale such as particle volume can not.
If the camera is kept in a fixed position with respect to therongr (using a tripod, for instance), then the
relative scale for all silhouette sets will be the same. Aldsoscale can be enforced by imaging an object of
known size such as a ball bearing.

A data set of 220 pieces of gravel was captured using the nmsetup with the camera fixed to a tripod
with a tilt angle of approximately 45 Three images were captured of each stone, with the stonesatha
reoriented between shots. Polyhedral models of the stamafiustrated in Appendix C on page 220. The
data set of 220 pieces of gravel is used to test shape andnitongalgorithms in later chapters.

- @ - e [ ] o
™ . @ @ e a
® ® ®
(a) 12.700 mm ball (b) 15.875 mm ball (c) 19.050 mm ball

e ® X e *
® @ _ e -

(d) 25.400 mm ball (e) 31.750 mm ball (f) 38.1200 mm ball

Figure 4.14 Six images of six ball bearings used for enforcing scale.
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Scale was enforced for the gravel silhouette sets by fittingheere to silhouettes of an imaged ball bearing
as described in Section 4.7.2. Stones were grouped in Izatdl®9 and calibration and scale enforcement
was carried out separately for each batch.

To test the accuracy of scale enforcement, six images obkaltings of different sizes were captured (see
Figure 4.14). For each ball, the calibration and scale mé&dion estimated with another ball was used, and
together with the ball's silhouettes the best fit sphere vamsputed. The diameter of the best fit sphere is
compared with the ground truth diameter in Table 4.2. Resar¢ shown for all pair combinations. The
largest absolute percentage error for an estimated diamde281%.

12.700 mm
ball

15.875mm
ball

19.050 mm
ball

25.400 mm
ball

31.750 mm
ball

38.100 mm
ball

12.700 mm
calibration

15.905 mm
(+0.189%)

19.062 mm
(+0.065%)

25.453 mm
(+0.207%)

31.786 mm
(+0.115%)

38.168 mm
(+0.180%)

15.875mm
calibration

12.676 mm
(-0.189%)

19.027 mm
(-0.123%)

25.405 mm
(+0.018%)

31.727 mm
(-0.074%)

38.097 mm
(-0.009%)

19.050 mm
calibration

12.691 mm
(-0.071%)

15.894 mm
(+0.122%)

25.438 mm
(+0.150%)

31.770 mm
(+0.064%)

38.152 mm
(+0.135%)

25.400 mm
calibration

12.671 mm
(-0.231%)

15.869 mm
(-0.037%)

19.021 mm
(-0.152%)

31.724 mm
(-0.081%)

38.098 mm
(-0.005%)

31.750 mm
calibration

12.678 mm
(-0.175%)

15.879 mm
(+0.024%)

19.033mm
(-0.089%)

25.418 mm
(+0.073%)

38.132 mm
(+0.085%)

38.100 mm
calibration

12.664 mm
(-0.281%)

15.862 mm
(-0.080%)

19.014 mm
(-0.189%)

25.394 mm
(-0.022%)

31.721 mm
(-0.090%)

Table 4.2 Ball diameters estimated from a 5-view image of a ball usialijpration parameters determined by a 5-view image of a
ball of another size. Estimated ball diameter and percengagr are shown.

4.8 Summary

A novel image capture setup that provides a simple meansafmiudng multiple silhouettes of an object
from well-distributed viewpoints has been described. Thiapter has demonstrated how silhouettes impose
constraints that allow the pose and internal parametemxiassd with each view to be computed from the
silhouettes alone. Since self-calibration is appliedréelig no need for accurate positioning of the apparatus,
and there is no need for a calibration object with controhpowhose coordinates must be known in advance.

Synthetic images have been used to demonstrate that theutesngamera parameters have less effect on
quality as measured by the silhouette calibration ratio th& noisy silhouettes from which they are com-
puted.

The approach is limited to objects that can be segmentedtfretmackground to produce silhouettes. Objects
are required to be positioned so that five non-overlappiegiare visible to the camera.
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The method provides the required input for multi-view silatie-based particle analysis applications (such
as recognition and shape analysis), and is also potengialgeful tool for 3D multimedia content creation.

Later chapters will quantify the performance that can bésseldl for shape property estimation and matching
applications using the two-mirror setup described in ttiapter. This will be done using the data set of
images of 220 pieces of gravel.
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Chapter 5

Configuration and Calibration of a
Multi-Camera Setup

5.1 Introduction

A multi-camera setup allows a much greater throughput tze the two-mirror setup described in the
previous chapter, but this comes at the cost of greater rapnexpense.

The setup used in this thesis consists of six simultanedusjgered cameras. Particles are placed on a
feeder above the cameras. The feeder causes the partididbpast the cameras one by one at a rate of
approximately ten particles per second. As each partitle fapasses through a light curtain that triggers
the cameras so that a 6-view image set of the particle is htThe multi-camera setup used in this work
was built by Anthon Voigt and his team at the premises of thraany that commissioned part of the work
described in thesis. The hardware aspects of the multiH@estup lie outside the scope of this thesis.

In this chapter, the rationale behind the positioning ofdameras is discussed. A simple method for cali-
brating the cameras using images of a ball of known size is pnesented.

5.2 Positioning Multiple Cameras

The multi-camera setup serves several purposes: matdaingss estimating various size and shape proper-
ties, and building 3D visual hull models of stones for vissgtion purposes.

Accuracy can be improved for a given application by incregghe number of cameras in a multi-camera
system. However, for a given number of cameras, it is notats/how the cameras should be positioned
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SO as to obtain the best accuracy. The solution to the proldesomewhat dependent on the measure of
accuracy, the specific application, and the sizes and sludples particles.

The multi-camera setup was built with six cameras positseethat each camera looks onto one of the six
parallel face pairs of a regular dodecahedron. Figure hidtibites the setup. Each camera is approximately

o

& ¢

¢ g ¢

Figure 5.1 The configuration of the six-camera setup used in this shesi

500 mm from the centre of the dodecahedron. Since partieled to be imaged close to the centre of
the dodecahedron, and are approximately 5mm in diameteseatup provides weak perspective imaging
conditions: particles are close to the optical axes of ath@as, and particle depth variation is small with
respect to the distances to the cameras.

The number of cameras was limited by monetary cost and haedhivaitations. Six was also considered
to be a more favourable number of cameras than five or sevae aisymmetrical configuration could be
realised. The remainder of this section gives some judiificdo the choice of camera configuration.

5.2.1 Undesirability of Coplanar Cameras

Although the problem of determining the best next view faafrom-silhouette modelling has been con-
sidered before [12, 114], the problem of optimally positi@na number of fixed cameras for shape-from-
silhouette applications has received little attentiorhim¢omputer vision literature.

Mundermann et al. [98] address the problem in the contextiidding visual hull models of humans. They
find that cameras positioned in a geodesic dome configurétemnwell-distributed over a hemisphere), and
cameras positioned in a circular coplanar configurationradhe object produce the best results.

Other than Mundermann et al.’s findings that a circular amgrl@onfiguration is desirable for at least certain
applications, a coplanar configuration is worth considgsdimce it simplifies the manufacture and assembly
of the structure that houses the cameras.

Figure 5.2 illustrates why a circular configuration (cansendth coplanar optical axes) is undesirable for
estimating 3D shapes of certain nonconvex particles fréhoseétte sets. In the first row of the figure, the
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(a) particle and cameras (b) visual cones (c) visual hull

A A
o %

(d) particle and cameras (e) visual cones (f) visual hull

A A
& _y4®

Figure 5.2 Six cameras observing a banana-shaped particle: (ahda) cameras with coplanar optical axes, (d)—(f) show camera
based on a Platonic solid geometry. Note that the coplamaeies yield a visual hull model that is much larger than thége:

the extra volume is due to the saddle-shaped region of thielparThe cameras based on a Platonic solid geometry yigldiel

hull model that is a relatively close approximation to thetigke.

cameras are positioned so that their optical axes are aphaith an even angular distribution about 180
The visual hull model (Figure 5.2¢) is a poor approximatiothe banana-shaped particle (Figure 5.2a), since
there is additional volume in the saddle-shaped regions Taimera configuration would perform poorly at
visual hull-based volume estimation, since for nonconvastiges the volume estimate would be highly
dependent on the orientation of the particle with respethéocameras. The circular camera configuration
is desirable for building visual hull models of humans (tpel&ation of Mundermann et al.), since humans
are not arbitrarily oriented with respect to the cameras.

Section 7.5.5 provides some further results that demdasting undesirability of coplanar cameras in the
context of matching pairs of silhouette sets: mismatchspaannot be distinguished from match pairs for a
range of particle orientations.

5.2.2 Positioning Cameras by Optimising Objective Functins
The camera configuration for the work presented in this shesis determined by optimising an objective

function. Two approaches were considered: (1) maximisiegsim of distances between frontier points on a
sphere, and (2) minimising the angle between the most ebMitection and its closest viewing direction. In
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other words, two different criteria were considered forifiosing the cameras. Thigontier point criterion
specifies that the cameras should be positioned so that theokdistances between frontier points on a
sphere is maximal. Thdirection isolation criterionspecifies that the direction that is furthest (in terms of
angle) from any of the viewing directions is minimal.

Representation for Cameras

The pose of a camera has six degrees of freedom. Howeveriémeadion of the camera does not affect the
information contained in a silhouette: rotating the canmaraut its centre does not alter the rays that pass
through the centre. Furthermore, since the viewed pastele small with respect to the variation in particle
position and the working distance of the cameras, it may berasd that the distance from the cameras to
the particles is many times greater than the size of theghesti This means that the positional component of
each camera along its optical axis is almost inconsequdrdia an informational point of view. For these
reasons, the positioning of each additional camera witheesto a fixed first camera can be considered to
introduce only two additional degrees of freedom. For siaity] cameras are considered to be directions
specified by points on a sphere and an orthographic imagirtghm®used.

Camera positions are over-parameterised by using threglioates to specify the position of each of the
cameras on the viewing sphere (two degrees of freedom). Vdreparameterisation prevents the occurrence
of singularities and allows for a smooth function to aid tiptimisation process.

The Frontier Point Criterion

The objective function to be maximised for the frontier gaéniterion is the sum of distances between
frontier points on a sphere viewed by orthographic cameEash possible pairing of two cameras yields
two frontier points on the viewed sphere:niftameras are used, then there afe— 1) frontier points. A
sphere is used instead of any other shape for reasons of syyramd simplicity. In practice, particles being
viewed by the cameras can be assumed to be arbitrarily edeatsphere does not introduce any directional
bias. Maximisation of the objective function ensures thantier points are well-distributed over the surface
of the viewed obiject.

Since frontier points are well-distributed on a spherey e also well-distributed on the particle. (The
frontier points that lie on the saddle-shaped region ptdgeepipolar tangencies that are matter epipolar
tangencies, since the epipolar tangencies lie on concawedaoies of the silhouettes.) Frontier points lie
both on the particle and on the visual hull, so regions closthé frontier points are accurately modelled
by the visual hull (provided that there aren't sudden chanigethe local surface geometry). A camera
configuration that causes frontier points to be well-disttéd over the object is therefore likely to provide
a visual hull model that accurately approximates the dartiger all regions of the particle’s surface. This
reduces the likelihood of certain regions being poorly nledeand ensures reasonable performance for
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applications such as volume estimation and shape anatygikich the visual hull is used as an estimate of
the shape of the particle.

The Direction Isolation Criterion

An alternative approach is to minimise the most isolatedsedwiewing direction. By limiting the maximum
difference in direction between unobserved views of andilgad the observed views, the probability of not
observing a saddle-shaped region of the object’s surfacindtance, is reduced.

The most isolated direction is determined using a sphekoebnoi diagram. The Voronoi diagram is a
division of the surface of a sphere into cells, based on tkéipns of a set o§ite points on the sphere. Each
cell surrounds exactly one site point so that each pointimitie cell is closer to the site point contained in
the cell than to any other site point. Each viewing direci®aepecified by a pair of antipodal points on the
viewing sphere: these are the site points.

To determine the most isolated point from a set of site painta sphere of any dimension, only the vertices
of the Voronoi diagram need be considered, since for anyseotex point there will be a Voronoi vertex point
that is more isolated. The most isolated camera directidheisefore computed, for a given set of viewing
directions, by finding the Voronoi vertex whose closest it is further than for any other Voronoi vertex.

Spherical Voronoi diagrams can be easily computed for sghier any dimension. The procedure is illus-
trated in Figure 5.3. Tangent planes at site points must heidered. The intersections of the halfspaces
specified by the tangent planes is a convex polyhedron. Tifgphae intersection can be formed by com-
puting the convex hull in dual space, i.e., by treating thembgeneous representation of the tangent planes
as points. The dual of the dual space polyhedron is the medjyiolyhedron (Figure 5.3b). The Voronoi
diagram is formed by projecting the polyhedron verticeodhe sphere (Figure 5.3c). The connectivity of
the diagram is given by the connectivity of the polyhedromisTmethod of computing Voronoi diagrams
using convex hulls in a higher dimension was introduced bynwBr[19].

5.2.3 Configuration Optimisation Results

Both objective functions were optimised using Matlab's ddgtMead simplex method [28]. Starting points
for camera positions on a sphere were chosen by randomigtisgigoints from a subdivided icosahedron.
Four subdivisions of the icosahedron were performed toiml@42 points that are well-distributed on a
sphere. The objective function was evaluated for 1000 réifferandomly selected point sets, and the best
of these point sets was used as a starting point for an optiimis This procedure was repeated 1000 times,
and the best result was selected. Multiple applicationisfapproach produced the same sets of relative
camera positions. Figure 5.4 illustrates camera configurabptimised with the direction isolation criterion
and with the frontier point criterion. Antipodal pairs ofipts on the unit sphere indicate camera directions,
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@ (b) (©

Figure 5.3 Procedure for computing the Voronoi diagram on a spheja $phere with some site points in colour, (b) a polyhedron
formed by intersecting all halfspaces defined by tangemtgsddo the site points, (c) the Voronoi diagram formed byeqmriing the
polyhedron vertices onto the sphere; the connectivity efdilagram is given by the connectivity of the polyhedron.f&e regions

on the Voronoi diagram are coloured according to the neartspoint.

(d) (e) ()

Figure 5.4 Camera configurations with camera directions represeoyespheres of the same colour: (a) optimal 3-camera di-
rections for both direction isolation and frontier poiniteria, (b) optimal 4-camera directions for direction eibn criterion, (c)
optimal 4-camera directions for the frontier point criterj (d) optimal 6-camera directions for both direction éi@n and frontier
point criteria, (e) optimal 10-camera directions for difee isolation criterion, (f) optimal 10-camera direct®for frontier point

criterion.
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and regions on the sphere are coloured to correspond todbesticamera direction. For certain numbers of
cameras, the two camera positioning criteria producereéiffieconfigurations, whereas for other numbers of
cameras, one configuration is optimal for both criteria.

Notably, the direction isolation and frontier point criteboth produce the same configuration for six cameras
(see Figure 5.4d). This configuration was therefore chosethé six-camera setup used in this thesis.

In the case of the frontier point criterion, 3-, 4-, 6-, andcHdnera setups correspond to the directions
specified by the face normals of the Platonic solids. (Theleedetrahedron and the regular octahedron both
correspond to the same 4-camera setup.) In the case of #wdidlir isolation criterion, the 3- and 6-camera
setups correspond to Platonic solids, whereas the 4- amdrb@ra setups do not.

Camera configurations optimised using the frontier poiitedon are illustrated in Figure 5.5. The corre-
sponding frontier points on a sphere are shown in Figure 5.6.

Although only the six-camera setup was physically realitieel camera configurations consisting of different
numbers of cameras are used in this thesis for several expets using synthetically generated data. This
enables investigation of the performance of various allgms with different camera configurations.

The best configuration of the two-mirror setup was also daterd by the optimisation using the direction
isolation criterion. It is a symmetrical setup with°7Between the mirrors and the camera tilted a042
This produces a most isolated direction that is048rom the closest viewing direction. This is only12
larger than the optimal most isolated direction that candbéesed from any five viewing directions.

5.3 Camera Calibration

Multi-view, silhouette-based particle analysis applimas such as particle size and shape analysis, and in-
dividual particle recognition require accurate camerécation. The internal and pose parameters of each
camera in a multi-camera setup must be estimated so thabtheyZorresponding to any 2D image location
is known in a common reference frame.

In earlier work [45], a calibration method was developedigsa calibration object with coded marker pat-

terns. Figure 5.7 shows two examples of the calibrationatbjeith coded marker patterns. The circular

markers are identified by their code bands, and the cameasmaitand pose parameters are inferred from
the positions of the imaged markers across multiple images.

Here, a different approach to calibration is described. Besp (typically a ball bearing) is passed through
the multi-camera setup several times, and several imagesetaptured. Pose and internal parameters are
then inferred from the images of the ball. This approach ofgiball bearings to calibrate the multi-camera
setup has several advantages over using a calibrationtefijfpccoded targets:
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- e
e
(d) 6 cameras (e) 7 cameras (f) 8 cameras

(9) 9 cameras (h) 10 cameras

Figure 5.5 Camera setups optimised with the frontier point criteribhen cameras (green) are shown together with thdazed
polyhedra representing each camera configuration. Théedtg are shown as a casing on which the cameras are mounted an
a positioning aid at the centre of the casing, with the camkraking onto the parallel face pairs. The setup in (a) ieas the
geometry of a cube; this is the configuration used by the Usiityeof lllinois Aggregate Image Analyser [108]. The siarmera
setup used in this thesis is configured as in (d). Note thaflfn)(d), and (h) show Platonic solids.
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(a) 3 cameras (b) 4 cameras (c) 5 cameras

(d) 6 cameras (e) 7 cameras () 8 cameras

(9) 9 cameras (h) 10 cameras

Figure 5.6. Positions of frontier points on a sphere for camera setyggnised with the frontier point criterion. The images
correspond to the images shown in Figure 5.5.
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(b)

Figure 5.7. Two examples of calibration objects with coded targets: a@ube with 54 targets and 9-bit code bands, (b) an
icosahedron with 60 targets and 10-bit code bands.

1. Unlike calibration using coded marker patterns, calibrausing balls makes use of silhouette images.
This means that there is no need for front lights to illuménaiject surfaces. Ball calibration therefore
has the potential to reduce the complexity of a multi-cansetap by removing the need for two sets
of lights; only the back lights that are already requireddaating silhouette images of particles are
needed.

2. By using objects that fall off the feeder (balls) insteddanmving a calibration object in front of the
cameras, the appropriate 3D region is calibrated. Sincedlifgration parameters are to be used with
objects that fall off the feeder, appropriate coverage lisesed.

3. Since the shape of the balls is known in advance, the sttesiboundaries can be robustly detected
from within images: the image of a sphere is a conic sectiod,can be closely approximated by a
circle in many practical imaging configurations.

4. Unlike calibration objects with coded marker patterra| bearings of many sizes are inexpensive and
readily available.

5. Balls can be used to calibrate common fields of view that@esmall for coded marker patterns to
be used. It is impractical to create a calibration objechwided marker patterns that is much smaller
than an inch in diameter. However, small ball bearings camdsleel with relative ease.

Camera calibration is carried out by adjusting all cameramaters simultaneously to minimise the ET error
across all observed silhouette sets using the Levenbergtdedt method. Although this approach can be
carried out using silhouette sets of stones rather thaowslite sets of a ball, using a ball instead of stones
provides two advantages:
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1. The ball images provide an effective means for computiitipl parameter estimates. Without good
initial parameter estimates, Levenberg-Marquardt otitidn may converge to a local minimum that
is far from the global minimum.

2. Minimisation of ET error across all silhouette sets doatdetermine absolute scale. A ball of known
size provides a convenient means for enforcing absolute.sca

5.3.1 Related Work

Early works on camera calibration (within the field of cormggutision), such as Tsai's method [130], rely on
control points with accurately known 3D coordinates. In1880s, self-calibration methods were developed
for computing camera parameters from correspondencesiutspsith unknown 3D coordinates. One of
the original self-calibration methods was developed by dsirand Kanade [129] for orthographic cameras.
Although the method has been extended in various ways tespgetive camera model [56,115], the method
described in this chapter uses the Tomasi-Kanade methostdblish initial camera parameters. This is
because the perspective modelling methods are unstable ddgree of perspective distortion in a scene is
small. By using images of a ball, it is easy to closely appr@ate multiple point correspondences that would
be observed by orthographic cameras with the same viewiegtitins as the actual cameras.

Practical methods for calibrating multi-camera setupethas self-calibration point correspondences have
been described in the computer vision literature. For m&#aSvoboda et al. [122] calibrate a multi-camera
smart room. Their system consists of four cameras that shlarge common field of view. Point correspon-
dences across multiple views are obtained by having a pensee a laser pointer around the common field
of view.

Following the analysis of the generalisation of the epipalanstraint to include silhouettes [3], there has

been interest in calibrating multi-camera setups usirtgpaittes. Sinha and Pollefeys [120] make use of
outer epipolar tangents to calibrate a network of cameramg) uslhouettes. Random sampling is used to
identify consistent corresponding epipolar tangencies®for computing initial parameter estimates. Since
the six-camera setup considered in this chapter is a higiyralled environment, it is not necessary to

resort to random sampling to estimate initial parametémsesmultiple point correspondences can easily be
generated using a ball.

The computer vision literature describes several appemtihcalibrating cameras using spheres. Shivaram
and Seetharaman [118] point out that the major axis of aptieldil projection of a sphere always passes

through the principal point. Using this observation, theyivk equations for camera poses and internal

parameters, and test their method with synthetic images.

Xu et al. [128,140] show how internal and pose parameterbeastimated separately using linear methods.
The solution is then globally refined using the Levenbergddardt method.
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Agrawal and Davis [1] describe a method for multi-camerabeation using spheres. They use a dual
space approach and solve the camera parameters using efamitedorogramming (an extension of linear
programming where positive semi-definiteness constraisised on matrix variables). The method appears
to solve the same problem addressed in this chapter.

These approaches provide alternatives to the approachwdsused, which was chosen for its relative
simplicity. A possible problem with the above approachethé the perspective distortion in individual
images is low: imaged balls appear as circles. This makeffiguit to resolve the relationship between
depth and focal length from individual images. The methad ¥as used is able to resolve these factors by
considering multiple ball images in which the ball positiaries somewhat. To a good approximation, the
ball projections appear as circles of varying size, allgndepth and focal length to be estimated.

5.3.2 Preprocessing

The calibration routine requires the same ball to be pagsedgh the six-camera setup several times. Usu-
ally approximately 20 image sets are captured. A backgramadye is also captured for each camera.

The first step of the calibration procedure is to computestiokl values to use for threshold-based seg-
mentation. This is done using Otsu’s method which minimigesintra-class variance of pixel intensity
values [105]. Polygonal ball boundaries are extracted feach image using the same threshold-based seg-
mentation routine that is to be used for subsequently dktastone silhouette boundaries. The routine is
described in Appendix A.

A circle is fitted to each ball boundary. First, a linear lesgiares method is used to form an initial solu-
tion. This solution is then refined by minimising the sumsgfiared distances from the polygon vertices
to the circle. The fitted circles are used for determiningiahparameter estimates; the original polygonal
boundaries are used for refining the solution.

5.3.3 Initial Parameter Estimate

The initial pose estimates are computed using the Tomasa#e factorisation method. The method de-
termines 3D point locations and camera poses from orthbgragojections. To estimate the orthographic
projections of the ball centres from the same viewing dioast as the cameras, the radii of circles repre-
senting the imaged ball boundaries are used. By scalingitbles with the image centres as the origins
(i.e., assuming that principal points are at image centhes$caled circle centres provide a close approxima-
tion to the orthographic projection that would be obtainexhf the viewing direction. The Tomasi-Kanade
method provides the 3D positions of the ball centres andahegeca poses (although camera depths are not
given, since an orthographic projection is unchanged byaagh in depth). However, there are always two
consistent solutions. To resolve the ambiguity, the cidideneters are again used. The solution that results
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in the circle diameter decreasing with ball depth is chog&mhogonal regression lines are fitted to the ball
depth and circle diameter values to compute the camera degtfocal length values.

Computing Approximate Orthographic Projection Coordinat es

A good approximation of the orthographic projection of ttadi’e centre is obtained from the camera’s pro-
jection of the ball. Since the distance from the ball to theneea is large with respect to the ball diameter,
and since wide angle lenses are not used, the ball boundamglase approximation to a circle. The coordi-
nates of the orthographic projection of the ball ceriitgy.) are estimated from the extracted circle centre
coordinateguc, vc) as follows:
Xe = @ (5.1)
Ve —I Vo
f

Yo = (5.2)

where (up, Vo) is the estimate of the principal point (the image centre edysndr; is the radius of the
extracted circle in pixels. These equations produce coatés that are in units of the ball radius.

Tomasi-Kanade Factorisation

This section briefly describes the Tomasi-Kanade factiimisanethod. Further details are given by Tomasi
and Kanade [129].

The first step is to move the origin to the centroid of the prigjd points. This removes the translational
component of the pose, since the projection of the 3D cehtybihe 3D points is the 2D centroid of the 2D
point projections.

Next, ameasurement matrW is formed from the translated coordinates:

X11 o Xim
n X ...
W — n1 Xnm (5.3)
Y11 0 Yim
Y1 0 Ynm

The 2h rows ofW correspond to tha cameras, and the columns correspond to tieimage sets of different
3D ball positions.

91



Singular value decomposition is appliedibto give
UsvT =Ww. (5.4)
The first three columns &f are used to form enotion matrixM. A shape matrix
S=3vJ (5.5)

is formed fromZs, the first three rows and columns Bf andVs, the first three columns &f. This results in
the factorisation

~

W =MS (5.6)
The shape matrix and the motion matrix represent the 3Dtsteiand camera poses up to an arbitrary affine
transformation. In other words, any arbitrary affine transf of the 3D structure yields a consistent solution.

The true motion matri® has rows that are unit vectors, and the corresponding rotteinpper and lower
halves of the matrix are orthogonal. To enforce these caingst a matridA is sought such that

M =MA (5.7)
S=A"1§ (5.8)
andA enforces the metric constraints
il AATI, =1 (5.9)
iTAAT), =1 (5.10)
it AATj, =0, (5.11)

wherei] is therth row of M andj[ is the (r +n)th row of M. These constraints are imposed using linear
least squares to determi@g where
Q=AA" (5.12)

OnceQ is determined, Cholesky factorisation is used to deterrAindomasi and Kanade use nonlinear op-
timisation to determiné directly; the approach of using Cholesky decompositiorescdbed by Weinshall
and Tomasi [134].) If the matriQ is not positive definite, then Cholesky decomposition caiwecapplied.
This will occur if the system becomes completely overwhealrhg noise.

The rotation matrices associated with each camera haveifoysandk, where
kI =il xjl. (5.13)

In the presence of noise, these matrices will not in generakthonormal. The singular value decomposition
is used to enforce orthogonality: the diagonal matrix indbeomposition is replaced by the identity matrix.
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Resolving the Reflection Ambiguity

There is an inherent ambiguity in the solution to the camesep and 3D point positions: two solutions
are consistent with the observed orthographic projectidie two solutions correspond foand —A both

providing consistent solutions. Figure 5.8 shows an exarmpkwo scenes in which both sets of cameras
capture the same orthographic projections. The ambiguisgs® because a positive rotation of a point in
front of a centre of rotation cannot be distinguished fromegative rotation of a point behind the centre of

rotation [18].
.-'"'\-\._ o

.o‘“

% #

Figure 5.8 Two consistent setups for a set of observed orthograplint pmjections. Note that the camera icons represent nigwi
directions; the position of the camera parallel to the viydirection is inconsequential.

To resolve the ambiguity, each of the two possible solutisnsonsidered in turn. For each camera, the
imaged circle radius should be inversely proportional adksociated depth, since for a weak perspective
projection
fr
M= TW (5.14)
wheref is the focal lengtht,, is the ball radius, andis the depth. World coordinates are measured in terms

of ry, thereforer,, = 1. Camera depths are unknown at this stage and are set to zero.

The correlation coefficient of the radius inverses and thpghdeare computed for each camera. The solution
that produces the largest positive correlation coeffidestlected. (In the noise-free case, the true solution
will produce correlation coefficients ef1 and the incorrect solution will produce correlation caidints of
-1)
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Estimating Focal Length and Depth Values

The depth of the cameras and the focal lengths are computétiitiy an orthogonal regression line to the
radii inverses and depth values (with all cameras initiptigitioned az = 0).

The slope of the regression line gives the focal length aachégative of the intercept is the camera depth.

5.3.4 Parameter Refinement

The initial parameter estimate is refined by using the LegegiMarquardt method to adjust all calibration
parameters to minimise the sum of residual ET errors actbs#hmuette sets.

Since each camera pair generates two outer frontier paatd) of which is imaged by each camera, each
camera pair generates four residual ET error values. Theffe@ pairings from six cameras therefore
generate 60 residual ET error values per image sets; theré(aresidual values fok image sets. The
calibration parameters for each camera consist of 10 paeasnger camera: three for the internal parameters
(f, up, andvp), and seven pose parameters (a quaternion to represemtiatiia, and a three element vector
to represent position). (The four element quaternion arenpeterises the orientation which has only three
degrees of freedom.) In total, 60 calibration parametersharefore adjusted to minimise the sum of square
residual error over @0residual values. Note that further parameters that modelinstance, radial or
tangential lens distortion could be added at this stageh(imitial values of zero). However, the lenses
used did not exhibit significant distortion, and initial exijnentation showed no benefit in including lens
distortion terms.

Since six cameras are used and pixels are modelled as sqtemesare sufficient constraints to calibrate
up to only a single unknown scale factor [58]. (Fewer cameramknown pixel skew and aspect ratios can
lead to cases in which calibration can only be carried outgmgective transform.)

Scale is enforced subsequent to the Levenberg-Marquaniinisation using the prior knowledge of the ball
diameter. Linear Euclidean triangulation [58] is used ttedwine the 3D position of the ball centre from
the circle centres of the images in each set. The ball diardgtgq implied by the model is then estimated
from each image using

dworld = %dimagea (5-15)

wheredimageis the diameter of the circle in the imagas thez-coordinate of the ball position in the camera’s
reference frame (i.e., the depth) afids the camera focal length in pixels. This is a weak perspecti
approximation that assumes that the rim (i.e., the contenerator that projects to the ball boundary in the
image) is at the same depth as the ball centre. This is a ggud>amation since the ball diameter is small
with respect to the distance to the camera centre. Cameitiopesare scaled to enforce absolute scale so
that the mean computed ball diameter is equal to the knowreval
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5.3.5 Experiments

The calibration method was tested using 20 image sets of4antitd ball bearing. Figure 5.9 shows a six
image set of a garnet, with projected epipolar tangentveltnising the computed calibration parameters.
The accuracy of the computed calibration parameters affemtv close the projected tangents are to being
tangential to the silhouettes: in the noise-free case tip@kgp tangency constraint specifies that the projected
tangents are tangent to the silhouettes.

Figure 5.9 An example of a six-image set of a garnet. The epipolar tatsgieom each image are projected onto the remaining
five images. The projected epipolar tangents are ideallyeaito the silhouettes; for real data that is not noisetfieg are almost
tangential.

To quantify the accuracy of the proposed calibration rau@md to investigate how calibration accuracy
varies with the number of ball image sets used, calibratias applied using randomly selected subsets of
the ball image sets. The accuracy of the calibration was ¢fuamtified by using the computed calibration
parameters to calculate the RMS ET error computed over Idfusitte sets of garnets. Results are presented
in a plot in Figure 5.10. The plot indicates that RMS ET ermiréess than 0.4 pixels can be achieved if a
sufficient number of ball image sets is used for calibratibhe results also demonstrate that the parameter
refinement by minimising ET error improves the accuracy dibcation parameters. The improvement is
largest when a small number of balls is used, but is stilliicant when 15 ball image sets are used.

Calibration based on six ball sets was compared with caidaising 30 image sets of a calibration ob-
ject [45]. The calibration object is illustrated in Figure’b. During the calibration procedure, 2996 control
points were located across the 36 = 180 input images. Silhouette sets of 98 uncut gemstones wgeck

as a test set. ET errors for the 98 silhouette sets are pliottéidure 5.11. Similar accuracy is observed for
the ball-based calibration parameters and the calibratipect parameters with RMS ET error values over
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Figure 5.10 RMS ET error computed over a test set of 100 six-view silli@usets of garnets using different calibration parameters
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all 98 silhouette sets of 0.667 pixels and 0.671 respegtivEhe initial parameter estimates produced an
RMS ET error of 2.18 pixels over the 98 silhouette sets.

The ET error computed on a test set of stones provides naaitiolicof the accuracy of scale enforcement,

because the ET error is invariant to the absolute scale @adorTo quantify the performance of scale en-

forcement, it is necessary to image objects of known sizagbrsets of three different sized balls were used
to determine the accuracy of scale enforcement.

Table 5.1 shows the results of using the image sets of onddvathlibration, and then estimating the ball
diameters of all three balls using the computed calibrgp@rameters with scale enforced using the known
diameter of the calibration ball. The diagonal of the talbleves ball diameters that are exact, as the same
ball image sets are used for calibration and for testing @sehcases. The table indicates that the typical
difference between estimated ball diameters the groutl talues is approximately 10 microns.

5.54 mm 8.73mm 10.50 mm
ball ball ball
5.54 mm 5540mm | 8.741mm | 10.502 mm
calibration || (0.007 mm)| (0.021 mm)| (0.013 mm)
parameterg 0% +0.126% +0.019%
8.73mm 5527mm | 8.730mm | 10.488 mm
calibration || (0.011 mm)| (0.028 mm)| (0.018 mm)
parameters| -0.237% 0% +0.114%
10.50mm | 5.531mm | 8.738 mm | 10.500 mm
calibration || (0.011 mm)| (0.029 mm)| (0.017 mm)
parameters| -0.162% +0.091% 0%

Table 5.1 Mean estimated ball diameters (with standard deviatiar all image sets considered in brackets) for balls computed
with calibration parameters determined from differenediballs. Percentage errors are shown in bold face. Ninedrsets were
used for the 5.54 mm ball; nine image sets were used for tt8n8i7 ball; and seven image sets were used for the 10.50 mm ball.

5.4 Summary

This chapter has described the geometric configurationeofrthiti-camera setup used for much of the work
described in this thesis, and has presented the ball-bastdwdcused to calibrate the cameras.

Although some justification has been given for the choicebjdative functions used for optimising the cam-
era configurations, the objective functions are esseptllhoc. This is the case because the multi-camera
setup is to be used for several different applications wipestormance can be measured in different ways,
so the goal is to find a configuration that will be desirabledbrapplications. Two different approaches
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(the frontier point criterion and the direction isolatioriterion) yield the same configuration for six cam-
eras. This configuration corresponds to viewing directitwas are parallel to the face normals of a regular
dodecahedron (one of the five Platonic solids).

Ball-based calibration produces ET errors of less than algor image sets of garnets and gemstones.
Approximately the same ET errors are obtained using a eaidsr object with coded targets.

The following chapters will quantify the performance thahde achieved for shape property estimation and
matching applications using the camera configuration alibration method described in this chapter.
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Chapter 6

Merging Silhouette Sets

6.1 Introduction

This chapter describes a simple but effective method fogmgrnwo silhouette sets of the same rigid object

into a single large silhouette set where all silhouette pase specified in a common reference frame. The
single large silhouette set allows a more accurate estiofatee 3D shape of the object to be made than

either of the original silhouette sets.

The same method can be used to merge further silhouettef $leésabject in different poses with the merged
silhouette set. This allows an arbitrary number of silhtauisets of an object to be merged into a single large
silhouette set.

The problem addressed in this chapter is another silhebhatted self-calibration problem. Here, it is the
external camera parameters (i.e., pose parameters) thduerinternal camera parameters that must be
estimated. The approach taken here is the same as for theatibtation problems addressed in Chap-
ters 4 and 5: use the problem-specific constraints to obwétialiparameter estimates, and then refine the
parameter estimates by minimising the ET error acrossisétie pairs. The unknown parameters that are to
be inferred from the two silhouette sets describe the welgtdse between the two silhouette sets.

To obtain an initial estimate of the relative pose, the apipnate 3D shape of the corresponding stone is
estimated separately from each silhouette set. This carobe dsing the visual hull, or the VEMH as
an estimate of 3D stone shape. The moments of the 3D shaphesraised to estimate the components
of relative pose between the silhouette sets. Centroidsised to estimate relative translation, principal
directions are used to estimate relative orientation, hind brder moments are used to resolve the four-way
alignment ambiguity (since pairs of principal axes can lpgnald in four ways).

This approach will be shown to work in most (but not all) cafgeghe silhouette sets of stones considered
in this work. The method fails in cases in which third ordemmemts do not resolve the four-way alignment
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ambiguity of the principal axes, and in cases in which thagypal axes of 3D approximations of the stone
provide a poor estimate of the relative orientation betwsiouette set pairs. In these failed cases, the
initial parameter estimate does not lie within the basinarfvergence of the optimal alignment parameters,
and a local minimum that lies far from the optimal solutiotoisated by Levenberg-Marquardt minimisation.

To address this issue, pose optimisation is attempted frawessive different starting points based on dif-
ferent initial pose estimates, and the pose estimate qamneing to the lowest ET error (i.e., the smallest
degree of silhouette inconsistency across the two silb@sets) is selected. Initial pose estimates may be
based on all four alignments of pairs of principal axes, amdamdom sampling of orientation space.

A version of the work described in this chapter was preseaseal conference paper [46].

6.2 Related Work

One of the earlier methods to create refined visual hull neobdglmaking use of two or more silhouette
sets of an object is described by Wingbermihle et al. [L3He relative pose between silhouette sets is
determined by means of an optimisation procedure. The aastibn is the mean squared distance between
surface points of the first visual hull and the closest serfamints of the second visual hull. A starting point
for the optimisation is determined from the principal axed aentres of gravity (centroids) of the two visual
hulls. If the cost associated with the starting point is taghhthen a heuristic approach is used: the relative
rotation is adjusted incrementally about each of the ppalcaxes in steps of 25until an adequate starting
point is found. Since the cost function is based on the visulilrather than the observed silhouettes, there
is no reason to expect that the correct alignment shoul@éspond to a cost function minimum, even with
exact silhouette sets.

Cheung et al. [26, 27] describe a method for determiningd rigansforms for aligning image sets of the
same object in different poses. Although their goal is thraesas for the method described in this chapter,
they make use of colour stereo matching in addition to sitieuinformation, whereas in this thesis only
silhouette images are considered. Their method involvewyuslihouettes to constrain the search for cor-
responding points along viewing edges (which they teounding edggs Pose parameters are iteratively
adjusted to minimise a cost function based on colour carsigt across image sets. Their setup therefore
requires objects and lighting such that (1) both silhosetied foreground texture can be reliably measured
from images, and (2) colour and intensity varies as littlp@ssible with viewpoint (i.e., a Lambertian model
must be a good approximation). This thesis takes a diffeapptoach, and lighting is set up to obtain the
best possible silhouettes at the cost of discarding forewtaexture.

Cheung’s motivation for using colour information in additito silhouettes is that alignment using silhouettes
is ‘inherently ambiguous’ [26]. To demonstrate the amkigut is shown that more than one alignment of
certain specific noise-free silhouette set pairs is exacthsistent.
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Despite Cheung’s illustration of certain specific ambigu@ases, the view taken here is that there is no
need to discard the possibility of alignment based on séktes alone. Although certain specific cases are
inherently ambiguous, they are unlikely to occur in pratid his is especially so with arbitrarily oriented
natural objects such as stones, for which an ambiguous psilhouette sets arising by coincidental align-
ment appears to be close to impossible. Of course, reausitt®sets are noisy and are therefore inexact; it
is certainly plausible that attempting to align silhoued&ts consisting of too few views or too much noise
may fail. This chapter will demonstrate that merged silltsusets captured using the imaging setups con-
sidered in this work are sufficiently accurate to provide soeable improvement in estimates of size and
shape properties that are of interest to particle shapgstaal

Subsequent to our initial publication [46] of the methodalé®d in this chapter, Hernandez [39] describes
a solution to the same problem in the context of creating edfirisual hull models of museum pieces such
as ornamental pitchers. Calibrated sequences of sillesuate captured using a turntable; this provides a
silhouette set of the object. The object is then reorientethe turntable and another silhouette set is cap-
tured. The method of merging the silhouette sets is esdlgritia same as the approach described here: pose
and scale parameters are adjusted to optimise a measulieoofesdie consistency. Instead of using ET error,
Hernandez proposes an alternative measure of silhoumitestency that he ternsilhouette coherencéil-
houette coherence measures the extent to which visual fojgigtions match the corresponding silhouettes.
This has the advantage of using more information containigginMhe silhouettes than the ET error, but
comes at the cost of having a discretised nature, and ragggétecting the value of a tunable distance offset
parameter. Results demonstrate that the visual hull modeled from the merged silhouette set is a better
approximation to the shape of the object than visual hullsiéad from either of the original silhouette sets.

Wong [138] describes merging individual silhouettes withauette sets. Since individual silhouettes are
used, approximate 3D models cannot be used to providelipitise estimates, and initial pose estimates
must be provided by the user. The pose estimate is then rdfingdnimising ET error.

6.3 Moments for Initial Parameter Estimates

A triangular mesh model that approximates the 3D shape ofdh@sponding stone is computed for each
silhouette set. This is done using the visual hull or VEMHadiged in Chapter 3. The moments of the mesh
models are used to form initial parameter estimates fonalgysilhouette sets of the same object.

6.3.1 Computing Moments from Triangular Meshes
The moments of the solid enclosed by a triangular mesh calebargly computed by visiting each triangle

and forming a polynomial function of the vertex coordinasdues. The basis for the method is described by
Lien and Kajiya [81], and Zhang and Chen [143] derive exphcjuations for third order moments. Mirtich
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[94] describes an alternative approach in which the DivecgeTheorem is used to reduce volume integrals
to surface integrals. Zhang and Chen’s equations are pegsanthis section.

The moments of the solid enclosed by a mesh are defined as

Moar = [[ [ X2 pix.y,2dxdydz (6.1)
wherep(x,y,z) = 1 for points inside the mesh, apdx,y,z) = 0 for points outside the mesh.

The moment equations depend on a determimathat must be computed for each triangular face:

T = X1(Y223 — Y322) + Y1(X3Zo — X2Z3) + 71 (XoY3 — X3Y2). (6.2)

For convenience, the equations derived by Zhang and Cheasieged here (using a slightly different format
for clarity):

Mooo=1/63 T (6.3)
Migo= 1/242 T (X1 + X2+ X3) (6.4)
Mz10= 1120 T(2x1y1 + 2XaY2 + 2XaY3 + X1Y2 + Xa¥1 + XaY3 + XaY2 + Xay1 + X1Y3) (6.5)
Mz200 = 1/60y T (X -+ X5 + 3§ + X1X + XoXa -+ X1Xa) (6.6)
Msoo = Y120y T (36 433 + 33 + X3 (X2 + X3) + X5 (X1 + X3) + X5(X1 + X2) + X1 X2X3). (6.7)

The summation sign indicates summation over all trianghes$ take up the mesh. The triangle vertices
are (x1,¥1,21), (X2,¥2,22) and(x3,ys,23). Since triangles share vertices with other triangles,icestwill

be visited on multiple occasions. The equations for theratblevant moments can be inferred from the
equations given above.

To determine an initial estimate of the relative pose bebtnes silhouette sets A and B, the centroid and
principal axes are computed for each of the two meshes tha@8@mapproximations to the stone computed
from each silhouette set. For each mesh,>adrigid transform matriXxv that aligns the principal axes of
the mesh with the-, y-, andz-axes is computed:

R3R, —c
M= , 6.8
( o 1 ) (6.8)
wherec is the centroid of the solid enclosed by the meRfjs a rotation matrix that aligns the principal
axes, anR3 is a rotation matrix that is used to resolve the four-wayratignt ambiguity.

Once rigid transform matriced » andMg have been computed for the two silhouette sets A and B, thalini
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pose estimat®l;,;; to transform from B’s world reference frame to A's world nefece frame is computed:

Minit = M5 Me. (6.9)

To computeM, the following steps are applied to each mesh. First, thérisetsanslated so that its centroid
c lies on the origin. The centroid is calculated as

M100
c=| Moio |/Mooo, (6.10)

Mooz
whereMgqg is the volume bounded by the mesh.

Next, a 3x 3 matrix of second order moments (a covariance matrix) istrooted:

M2oo Mi110 Mio1
S=| Mo Moo Mo |- (6.11)
M1o1 Mo11 Mooz

The columnwise eigenvectoes, e, ez of this matrix are used to form a rotation matRy = [e; e;e3]. The
mesh vertices are then multiplied Rgl to align the principal axes of the mesh with they- andz-axes.
This is done so that the third order moments can be computed.

The two third order moment®lgoz and Mgzp are computed to resolve the four-way alignment ambiguity.
(This arises because=and —e are both valid eigenvectors.) The valueRxfis determined from the signs of
Mooz andMg3g as indicated in Table 6.1.

‘ Mooz >0 H Mozo >0 ‘ R3 ‘
no no 180 rotation abouk-axis
no yes 180 rotation abouy-axis

yes no 180 rotation aboutz-axis
yes yes 3 x 3 identity matrix

Table 6.1 SelectingR3 based on the signs of the third order momeviggs andMgso.

This ensures that the composite rotatRyR, aligns the original mesh so thistygz > 0 andMgzg > O.

In certain cases, th®lggz and Mgz values of the visual hull or the VEMH may not match the signhaf t
Mooz and Mgzg values of the stone. This is particularly likely to occur whbe skewness of the volume
distribution along a particular principal axis is close &¥@ These cases may result in silhouette set pairs
being out of alignment by 180 In order to find the next most likely alignments, a rotatidriil80° about
the z- or y-axes can be used. These produce alignments in which the cigritherMggz or Mgz will differ
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for a pair of visual hulls or VEMHs (though the values for there may share the same sign). To obtain
the fourth alignment in which the values of neiti\dgoz nor Mgsg share the same sign across the two mesh
approximations, a 180otation about the-axis is used (i.e., a 180@otation about thg-axis followed by a
180 rotation about the-axis).

6.3.2 Experiments Using Moment-Based Initial Estimates
Synthetic Data
Experiments on synthetic data were carried out to invegtithee performance of moment-based estimates of

initial pose. Synthetic data has the advantage of havingtigx{enown ground truth values for pose.

Refined visual hull models formed from a data set of garnets weed to create synthetic silhouette images.
The data set is illustrated on page 221 of Appendix C.

Exact polygonal silhouettes that were generated from ptiojes of the mesh models were rasterised to cre-
ate synthetic digital images, and polygonal boundariegwgtracted using a subpixel segmentation method
that is described in Appendix A. The resultant digital inageere downsampled to create sets of images
at different resolution levels (see Figure 6.1). Synthdtita were generated for different configurations of

(a) /4 resolution (b) 1/8 resolution (c) Y1eresolution (d) 1/32resolution

Figure 6.1: An example of a synthetic silhouette shown at four diffémesolution levels.

different numbers of cameras: 2-, 3-, 4-, 6-, and 10-camenéigurations were investigated. The configura-
tions are based on the Platonic solids as illustrated inrEigb. The synthetic 6-camera setup corresponds
to the configuration of the real 6-camera setup. Two runsllobgéette sets were synthesised for each case.
In each case the stone models were oriented using a unifowomarotation, and were positioned with their
centroids at the intersection of optical axes. Camera depére based on the depths of the six real cameras
from the stones.

Pose optimisation was carried out using the Levenberg-tady method. The orientational component of
pose was parameterised using quaternions. This elimipatestial gimbal lock problems at the cost of
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an extra parameter: the relative pose is parameterisedseitbn parameters, but has only six degrees of
freedom.

The ET error is computedcrossthe two silhouette sets. This means that each silhouettenpiie first set
is paired with each silhouette in the second set.

Figure 6.2 shows empirical CDFs (cumulative distributiondtions) for the angle between the computed
relative pose and the ground truth relative pose. The anglédes a useful single-number measurement of
the dissimilarity between two poses. This approach coméeatost of discarding the positional component
of pose. At this stage, it is useful to consider the angle feestigating the behaviour of the proposed
pose optimisation method. Later in this chapter, practigailication-based methods of accuracy will be
considered too.

The figure shows CDFs for the initial pose estimates (‘iras)well as optimised pose estimates (‘opt’) for
initial estimates based on the moments of both the visua('™MH’) and the VEMH. Results are shown for a
6-camera setup and experiments are repeated at diffevets & image resolution. A nonlinear scale (based
on a sinusoidal transformation) is used for the horizonti.aThis aids visualisation, because interesting
portions of the CDFs occur neat &nd 180, whereas the CDFs tend to have almost constant value between
45° and 135. Also shown on each plot is the CDF corresponding to a unifaandom orientation. The
plots on left side show the results of optimisations basea single initial pose estimate in which third order
moments are used to resolve the four-way alignment ampigtithe principal axes. The plots on the right
side show the results of pose optimisation in which fouiahppose estimates based on the four alignments
of the principal axes are considered. The computed posethétlowest ET error is selected.

The CDFs allow one to read off the proportion of cases whetimated poses are within a certain angular
displacement from the true pose. The plots on the left sudhasin approximately 80% of cases, optimisa-
tion based on a single initial pose estimate leads to a pabéwivo degrees of the true pose. The closeness
to the true pose improves with higher resolution silhowgetiéhe plots on the right show that approximately
98% of cases lead to a pose within two degrees of the corrsetwben all four alignments of the principal
axes are considered. Although a threshold of two degreawbiisaay, the horizontal sections of the CDFs
suggest that there is a large range of threshold angles fichwiese proportions are insensitive.

The plots indicate that the VEMH slightly outperforms thsual hull for alignments based on third or-
der moments, but performance is approximately the same wiesidering four initial estimates per case.
This suggests that the VEMH provides a better estimate okke/ness of the volume distribution of the
corresponding stone than the visual hull.

The results of experiments repeated with different numbéameras is shown in Figure 6.3. The plots
indicate that as the number of cameras is increased, themimp of estimated poses that are close to the
true pose increases.

Figures 6.4 and 6.5 show plots of normalised ET error veragtedrom the true alignment for the experi-
ments whose results are displayed in Figures 6.2 and 6.8ataggly. Normalised ET error is the RMS ET
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Figure 6.5 Plots of normalised ET error versus angle between commpded and ground truth pose for the different camera setups
considered in Figure 6.3. THg4 resolution level is used.

residual error computed across the merged silhouette seliided by the RMS ET residual error computed
within each of the two silhouette sets. Since the six degpééeedom of pose optimisation is small with
respect to the number of different outer epipolar tangeargs (22 for n cameras) that generate the residual
errors, the normalised ET should be close to one for copredijned silhouette set pairs. The plots show
two distinct clusters that correspond to correct alignnflent ET error and small angle to the true pose) and
incorrect alignment (high ET error and large angle to the fyase). Note that both axes are nonlinear: this
aids visualising the clusters on the bottom left that areswuttially more compact than the clusters on the
top right.

In the case of two cameras (Figure 6.5a), two clusters asalisénct than for larger numbers of cameras. In
the case of three cameras (Figure 6.5b), two clusters aad\cldsible, yet the bottom left cluster consists
of normalised ET errors less than one. This is evidence afittiieg: the 2x 32 = 18 outer tangent planes
that generate ET errors across silhouette set pairs is nct larger than the six degrees of freedom of the
pose optimisation. For larger numbers of cameras, the dimedaET errors tend to cluster around a value
of one for the lower left cluster. The lower left cluster tentd become more compact and move towards an
error angle of zero, as image resolution is increased (Eiguf), and as the number of cameras is increased
(Figure 6.5).

The plots in Figures 6.4 and 6.5 indicate that ET errors terfdrim two clusters, one of whose alignments
are substantially closer to the true alignment than therofftas supports the use of ET error to investigate
the behaviour of real data.

108



Real Stone Images

Pose optimisation using moments for determining initiabpaeter estimates was applied to the data set of
images of 220 pieces of gravel, and 246 garnet stones. Toegid gravel were imaged using the two-mirror
setup described in Chapter 4, and the garnets were imageglths 6-camera setup described in Chapter 5.

Figure 6.6 illustrates the results of pose optimisationlieggo two 5-view silhouette sets. Only one of the
two silhouette sets is shown. The five images are croppedfdlu¢ @riginal image, since all five silhouettes
were captured in a single image using the two-mirror seflipeie is some overlap present in the second and
fourth images.) In this case, the computed pose appearsclodeto the correct pose, since all the projected
tangents are approximately tangent to the silhouettesfigime also shows projections of the 10-view visual
hull onto the original silhouettes. The visual hull projeas come close to covering the original silhouettes.
This is consistent with a pose that is close to the true velatose.

Figure 6.7 illustrates the results of pose optimisationlieggo the same pair of silhouette sets, but from a
different starting point. The initial pose estimate userehmuses the principal axes of the two VEMHs to
be aligned, but the third order moments do not have the sagns.sin this case, pose optimisation appears
to have found a pose that is far from the true pose. The pegjegpipolar tangents are not approximately
tangent to the silhouettes (as indicated by red line segheand the visual hull projections leave large
portions of the silhouettes uncovered. The silhouettelsarbbttom row have been coloured using a distance
transform, so that the distance of uncovered portions flersiihouette boundary is apparent.

Figure 6.8 shows CDFs of ET error for the garnet and gravel sietts. Similar behaviour to the experiments
with synthetic data is observed. In approximately 80% o&safor both the garnet and the gravel data, the
normalised ET error is below 2.0 when optimising pose froningle starting point based on third order
moments. The VEMH curves lie above the visual hull curvesfath data sets, indicating that the VEMH
provides a better starting point. However, the two curvessamilar in shape when using four starting
points based on four alignments of principal axes. The fat#s show results computed using the CDRH to
approximate 3D stone shape. (The CDRH is defined in Sectib@ 8n page 39.) The poor performance of
the CDRH demonstrates the importance of using varying ripttdeas for the VEMH, rather than constant
depth rims. The additional complexity of computing the VENHther than the CDRH is therefore justified
in this context.

Qualitative Results for 3D Multimedia Content Creation

The proposed method of merging silhouette sets is usefubmigtfor characterising stone shape, but also
for reconstructing the 3D shape of arbitrary objects for 3timedia content creation. Easily recognisable
shapes help to provide a qualitative demonstration of tfexfeness of the proposed method for creating
more accurate 3D reconstructions than can be made from ahg ofiginal silhouette sets.
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Figure 6.6: Correct alignment computed using moments up to order fiorezn initial pose estimate. The top row shows projected
epipolar tangents within the silhouette set in green, amdsacsilhouette sets in blue. The bottom row shows silhesiétt colour
with 10-view visual hull projections in grey.

& ©

Figure 6.7: Incorrect alignment. The top row shows projected epiptdaigents within the silhouette set in green, and across
silhouette sets in blue. Distances from the tangents toitheugtte are in red. The bottom row shows silhouettes inwolvith
10-view visual hull projections in grey.
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Figure 6.8 CDFs of normalised ET error computed using real image d2éshed vertical lines indicate normalised ET error of 1.0.

Figure 6.9 shows an example of visual hulls formed from fowiéw silhouette sets. The images were
captured using a 5-camera setup that was a predecessor@eaémera setup described in Chapter 5. The
visual hull formed from the merged 20-view silhouette sedls shown. The merged silhouette set was
obtained by merging the silhouette sets one at a time. A fimapeter adjustment of all pose parameters
using ET error computed across all silhouette pairs wasdaamesult in negligible further reduction in ET
error. Notice that the 3D reconstruction of the wingnut frtima merged silhouette set appears to be more
accurate than any of the original 5-view visual hulls.

Figure 6.10 shows another example, a toy cat, using imagasred with a 5-camera setup. Again, the

20-view visual hull formed from the merged silhouette seiegrs to be a better 3D reconstruction than any
of the original 5-view visual hulls, each of which have salngial regions of extra volume. The figure also

shows the computed positions of the 20 silhouette views disas¢he corresponding visual cones. Note

how the viewpoints provide a good coverage of the viewingesph
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Figure 6.9 Visual hulls of a wing nut. The top row shows four 5-view \ashulls. The bottommost illustration shows the refined
20-view visual hull obtained by merging the four 5-view sillette set into a single large set containing 20 silhouettes

The proposed method provides an alternative means for raagtsilhouettes from many well-distributed
viewpoints using the two-mirror setup. In Chapter 4, a métvas described in which the camera is moved
with respect to the mirror and object so that a good coverhtiewiewing hemisphere can be obtained. The
proposed method provides another approach: the objectisdrand the camera and mirrors stay fixed. This
requires a tripod or some other method of fixing the camerargipect to the mirrors. Figure 6.11 shows an
example in which three images of a toy moose are captured tisgntwo-mirror setup. The figure illustrates
once more that a refined visual hull model formed from a megjjaduette set is a better reconstruction than
can be formed from any of the original silhouette sets.

An advantage of using the proposed method with the two-m&etup is that images can be captured over the
entire viewing sphere (as opposed to a viewing hemisph@&ra} allows 3D reconstructions to incorporate
texture, and also allows foreground information to be ipooated for estimating 3D shape. Figure 6.12
shows an example in which a toy cheetah is modelled. For dajelstqpose, two images are captured: one
with the backlight switched on to facilitate silhouetteraxtion, and another with no backlight to capture the
foreground texture of the object.

6.4 Estimating Shape Properties

This section describes several experiments that quattéyrdpeatability and accuracy with which shape
properties can be estimated using the proposed mergingthelfeaders who are not specifically interested
in shape property estimation may wish to skip this sectiad,@ntinue reading Section 6.5 on page 128.

To address the problem of initial pose estimates that doezat to sufficiently low ET error, the best opti-
misation based on 100 starting points formed with uniformdean sampling of orientation space was used.
The large number of starting points ensures that a pose tddke true pose is likely found, but this comes
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Figure 6.1Q Visual hull models of a toy cat: (a)—(d) four models eachttfubm five silhouettes, (e) the model built from the 20
silhouettes used in (a)—(d) after the poses of all silhesdiive been determined in a common reference frame. Theaposes
corresponding to the twenty views are shown in (f), and tkealicones are shown in (g).

—} — E—

Figure 6.11 Reconstructing the 3D shape of a toy moose. The top row stiefiree input images, and the bottom row shows the
corresponding 5-view visual hulls. The rightmost visudl luformed from the merged 15-view set.
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Figure 6.12 Reconstruction of a toy cheetah by merging five 5-view si#fite sets. Input images were captured using two mirrors
and a backlight: (a) shows an example of a backlit image ahdhows an example of the corresponding frontlit image. rAfte
calibration and pose optimisation using silhouettes etichfrom the backlitimages, the frontlitimages were usdulild a photo-
consistent three-dimensional model. This was done wittwsoé created by Mathew Price (University of Cape Town) ihaased

on the work of Vogiatzis et al. [132]. The software uses ofgtation based on graph-cuts to compute a textured photsistent
mesh. Two novel views of the three-dimensional model witthaithout texture are shown in (c)—(f).
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at the cost of increased running time. In Chapter 9, whergtse optimisation is used for matching, a
framework is introduced that removes the need for spegfifie number of starting points in advance.

To be useful in the context of particle shape analysis, thpgsed method must produce silhouette sets for
which shape features can be estimated more accurately fremérged silhouette set than from any of the
original silhouette sets. The shape features measuredtirermerged silhouette set should also be more
accurate than the mean value computed from both origifabsiltte sets, otherwise the merging method is
not providing any benefit.

6.4.1 Volume Estimation with Synthetic Data

A set of volume estimation experiments was carried out usliegsynthetic garnet data. Synthetic data
provide two important advantages over real data: (1) exemirgl truth is known for the stone volumes,

(2) the exact ground truth is known for the relative posewben silhouette set pairs. Knowing the ground
truth relative poses allows one to compare the accuracy lam® estimates based on inferred pose with
those computed using the actual pose. This provides argitiaticof how well the proposed method performs
compared with the optimal (i.e., exact) alignment.

Table 6.2 presents the results of the volume estimationrerpats for a synthetic six-camera setup. The
table shows the mean percentage error of volume estimasioig wolumes of the visual hull or VEMH as
estimates of stone volume. (The VEMH can be used becausekieeic stones are convex.) The mean
percentage error gives an indication of the systematia exssociated with a volume estimate. Since the
visual hull is an upper bound for the volume of the stone thatlpced the silhouettes, the volume estimates
tend to be overestimates and the percentage errors aréotieepositive. However, when computed using
noisy data, cone intersections will erroneously carve agvdsa volume, yet cannot add extra volume. This
means that with sufficient noise, the visual hull-based mawestimates become underestimates. This is the
case with the rightmost column in which the images have teatgst degree of downsampling.

The table shows RMS percentage errors for volume estimataputed using the equation
Vest= KVshape (6.12)

whereVestis the volume estimat&/snapeis the volume of the 3D approximation to the stone (eithentbeal

hull or the VEMH), andk is a constant selected such that the mean percentage erepoisThe constarktis
used to remove the systematic component of error. (SincaMmlls will consistently overestimate volume,

it makes sense to correct for this bias.) The valuk isfestimated from the data. This biases the computed
error downwards, but since the one degree of freedom is smithlirespect to the number of samples (246),
this bias is negligible. The approach of bias removal usingdfiplication by a constant determined from the
data will be used for further shape property estimation is ¢thapter.
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Confidence intervals given in the table are computed usingnEf bias-corrected and accelerated bootstrap
method [36]. (This method is used for all the confidence uatisrpresented in this thesis.)

The table indicates that the proposed method provides wlestimates close to those obtained using the
exact alignment. For the higher resolution images, the etesghouette sets provide better volume estimates
than the original silhouette sets from which they are form&de mean of the volume estimates from the

pairs of original silhouette sets provides a better volustaraate than the original silhouette sets, but at

sufficiently high resolution it is not as accurate as thenestes from merged silhouette sets.

VEMHSs provide more accurate volume estimates than visulig Far higher resolution images, but not for
lower resolution images. This is because at lower resaluiobstantial portions of cone strips are destroyed,
resulting in large regions in which there are no midpointsisTeduces the volumes of the computed VEMHs
and increases the volume variance, since cone strip regrerdestroyed at random.

The table also shows volume estimates based on the geomadriarithmetic means of the silhouette areas.
(All of the silhouettes for the merged silhouette sets aeduse., 12 silhouettes per stone for the results
shown in Table 6.2.) To remove the effect of depth on silheusize, the depth of the visual hull centroid

is used. Silhouettes are specified in normalised image owias$ and then multiplied by the depth faczor
This closely approximates an orthographic projectionesthe depth of the stone is large with respect to the
depth variation of points on the rim and the visual hull ceiadkr

The volume estimatés based on the arithmetic mean is computed as follows:
13
Vs=ks Y A, (6.13)
2

whereA is the area of théh silhouette, andly is an empirically determined constant.

The volume estimateén based on the geometric mean is computed as follows:

Vi = kn _ﬁpf/z” =kn exp (3/zn_i|npq> , (6.14)

wherekn is an empirically determined constant.

The factors oB/2in Equations 6.13 and 6.14 ensure a linear relationship weittme for parallel projections
of a set of objects with the same shape and orientation, loyitnggsize. In practice, variation in object shape
and orientation is the main source of error.

Table 6.2 indicates that volume estimates based on silteoaeta are less affected by image resolution

reduction than the visual hull- and VEMH-based estimates.higgher resolution cases, the area-based esti-
mates perform worse than the competing methods, wherdaes lattest resolution considered, the geometric

mean of area provides a more accurate volume estimate thaa terived from the merged silhouette sets.

Arithmetic mean is the approach to volume estimation ingagtd by Taylor [126].
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1/4 resolution

1/g resolution

1/16 resolution

1/32 resolution

quality 922.7 483.6 213.9 86.4
ET error 0.201 pixels 0.380 pixels 0.863 pixels 2.125 pixels
merged +3.70% +3.38% +1.47% -8.32%
pose est. 1.28% 1.30% 1.61% 5.34%
VH || (1.12%1.49%) | (1.15%1.50%) | (1.45%,1.82%) | (4.89%,5.86%)
merged +3.70% +3.37% +1.45% -8.38%
true pose 1.28% 1.31% 1.62% 5.41%
VH || (1.13%1.48%) | (1.15%1.50%) | (1.45%,1.83%) | (4.94%,6.02%)
merged +1.20% +0.63% -2.08% -14.76%
pose est, 0.95% 1.00% 1.70% 7.13%
VEMH | (0.83%1.11%) | (0.88% 1.14%) | (1.55% 1.88%) | (6.52%,7.89%)
merged +1.19% +0.62% -2.09% -14.71%
true pose 0.94% 0.99% 1.71% 7.33%
VEMH | (0.83%1.10%) | (0.88%1.12%) | (1.56% 1.88%) | (6.66%,8.20%)
Run 1 +8.37% +8.15% +6.74% -0.66%
6-view 2.13% 2.15% 2.25% 4.06%
VH || (1.88%2.55%) | (1.90% 2.54%) | (2.01%2.59%) | (3.73% 4.44%)
Run 2 +8.21% +8.00% +6.54% -0.90%
6-view 2.14% 2.17% 2.30% 4.34%

VH || (1.96%2.36%) | (1.97% 2.40%) | (2.09% 2.53%) | (3.96% 4.76%)
mean of +8.29% +8.07% +6.64% -0.78%
Run 1+2 1.67% 1.70% 1.83% 3.85%

VH || (1.50%1.93%) | (1.53%1.97%) | (1.66%2.07%) | (3.56% 4.19%)

Run 1 +1.72% +1.39% -0.44% -9.83%
6-view 1.92% 1.94% 2.14% 5.36%
VEMH || (1.71% 2.24%) | (1.74% 2.25%) | (1.95% 2.41%) | (4.94% 5.83%)
Run 2 +1.56% +1.25% -0.56% -10.13%
6-view 1.93% 1.99% 2.17% 5.80%
VEMH || (1.76% 2.12%) | (1.81%2.19%) | (1.97% 2.40%) | (5.32% 6.42%)
mean of +1.64% +1.32% -0.50% -9.98%
Run 1+2 1.54% 1.58% 1.79% 5.25%
VEMH || (1.40% 1.75%) | (1.44% 1.77%) | (1.63% 1.97%) | (4.83% 5.72%)
geometric 4.41% 4.40% 4.44% 4.95%
mean of ared (3.77%5.68%) | (3.78%5.73%) | (3.83%5.87%) | (4.42% 6.00%)
arithmetic 5.71% 5.71% 5.75% 6.19%
mean of area| (4.84%,7.48%) | (4.86% 7.48%) | (4.91%7.50%) | (5.41% 7.74%)
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Table 6.2 Volume estimation using the six-view synthetic garnetadatt various image resolution levels. Quality is the mean
silhouette diameter divided by the mean ET error. ET errtinésmean internal ET error over all silhouette sets. Meangreage
error is shown in italics. RMS percentage error is shown ildfage with 95% confidence intervals in brackets. Mergecepest.
indicates that silhouette set pairs were merged using thgoped method. Merged true pose indicates that the groutidpgose
value was used for merging. VH (visual hull) or VEMH indicatbe method of 3D shape approximation used.




Table 6.3 shows the results of the volume estimation exparinapplied to synthetic data formed using
different numbers of cameras. Results for the two-camexgp sdearly show that merging pairs of two-
view silhouette sets provides poses that are insufficiaritige to the true pose to provide improvements in
volume estimation accuracy. Whereas the estimates basatwing using the true pose provide volume
estimates that are more accurate than the competing metimauging using the estimated pose provides
volume estimates that are worse than the other corresppidilrbased methods. Increasing the number
of cameras to three offers a substantial improvement: theme estimates computed using the estimated
pose are almost as accurate as those computed using theseidipcreasing the number of cameras further
provides a far greater improvement in the accuracy of metiaded on the visual hull and the VEMH than
the area-based methods.

6.4.2 Caliper Diameter Estimation with Synthetic Data

A further experiment to investigate the accuracy of caligemeter estimation was carried out with the
six-view silhouette sets ats resolution level.

Ground truth values were determined for the shortest, rimediate, and longest diameters for the mesh
models of stones.

Table 6.4 presents the results of estimating caliper diaradétom the visual hulls and VEMHs of merged
and original silhouette sets. Again, the estimates fronsilheuette sets merged using the proposed method
produce results that are very close to the results obtaisid) the ground truth poses for alignment. The
proposed method also produces results that are more azthaatresults that are computed from the original
silhouette sets. The table also indicates that the longasteder can be estimated more accurately than the
shortest and intermediate diameters.

6.4.3 Mass Estimation with Data from the Two-Mirror Setup

The three runs of 5-view silhouette sets of the gravel datevsege merged into 15-view silhouette sets using
the proposed method. Figure 6.13 shows some examples obthievt visual hull models and photographs
of the gravel from the same viewpoint (the photographs aspped portions of the input images). Also
shown are the three 5-view visual hulls from the originali®avsilhouette sets. The figure shows a version
of the 15-view visual hull that is coloured according to whiaf the 5-view visual hulls share the surface
region. This demonstrates that each of the three silhogettetends to contribute at least somewhat to the
final 15-view visual hull.

Figure 6.14 shows some more examples of photographs ofl gnaste 5-view visual hulls rendered from the
same viewpoint. These figures provide a qualitative ilatgin of the degree of accuracy that one can expect
when using the two-mirror setup together with the proposedying method. Since the visual hulls cannot
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| 2cameras | 3cameras | 4cameras | 10cameras
merged +11.33% +8.93% +6.29% +2.10%
pose est, 9.52% 2.82% 2.36% 0.65%
VH | (8.469%1121%) | (2.529%3.26%) | (2.06% 2.75%) | (0.57% 0.76%)
merged +17.22% +8.96% +6.29% +2.09%
true pose 6.01% 2.79% 2.35% 0.65%
VH (5.15% 7.88%) (2.48% 3.22%) | (2.06%2.75%) | (0.57% 0.76%)
merged -5.70% +1.60% +1.62% +0.77%
pose est, 13.98% 2.71% 1.78% 0.48%
VEMH | (1240% 16.06%) | (2.37%3.27%) | (1.57% 2.07%) | (0.43%,0.56%)
merged +1.31% +1.66% +1.62% +0.77%
true pose 5.95% 2.55% 1.78% 0.48%
VEMH || (5.119%7.45%) | (2.30%2.94%) | (1.56% 2.06%) | (0.43% 0.56%)
Run 1 +41.10% +19.81% +14.24% +4.64%
6-view 7.57% 4.33% 3.99% 1.25%
VH | (6.66969.43%) | (3.71%5.41%) | (3.57%4.62%) | (1.11% 1.44%)
Run 2 +41.67% +19.46% +14.21% +4.60%
6-view 9.36% 4.18% 3.69% 1.18%

VH | (7.26%1514%) | (3.70%5.40%) | (3.37%4.10%) | (1.04% 1.46%)
mean of +41.38% +19.63% +14.23% +4.62%
Run 1+2 6.85% 3.39% 2.96% 0.93%

VH | (5.279%1097%) | (2.87% 4.49%) | (2.68%3.32%) | (0.84% 1.06%)

Run 1 -26.99% -8.49% -0.75% +1.78%
6-view 7.65% 4.66% 3.99% 0.96%
VEMH (6.70% 9.92%) (3.949%,5.85%) | (3.57%4.57%) | (0.86% 1.12%)
Run 2 -26.73% -8.68% -0.76% +1.73%
6-view 9.39% 4.71% 3.60% 0.93%
VEMH | (7.30%14.63%) | (4.11%6.38%) | (3.30%4.00%) | (0.82% 1.10%)
mean of -26.86% -8.58% -0.76% +1.76%
Run 1+2 7.15% 4.16% 3.02% 0.72%
VEMH (5.529%,11.22%) | (3.55%5.54%) | (2.72% 3.37%) | (0.65%,0.81%)
geometric 10.14% 5.80% 4.93% 4.24%
mean of areg (8.97%12.78%) | (4.84%7.59%) | (4.32%6.08%) | (3.66%,5.40%)
arithmetic 10.29% 6.38% 6.04% 5.67%
mean of ared| (9.17%12.68%) | (5.33%8.31%) | (5.21% 7.65%) | (4.80% 7.32%)

Table 6.3 Volume estimation using the synthetic garnet data witfedéint numbers of cameras at thie resolution level. Mean
percentage error is shown in italics. RMS percentage esrsindwn in boldface with 95% confidence intervals in brackeerged

pose est. indicates that silhouette set pairs were mergeglthe proposed method. Merged true pose indicates thgrthund truth

pose value was used for merging. VH (visual hull) or VEMH tates the method of 3D shape approximation used.
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| Diameter|  Shortest | Intermediate | Longest
merged +1.82% -0.72% -1.11%
pose est. 3.06% 2.76% 1.05%
VH || (2.49%3.94%) | (2.47%3.14%) | (0.94%, 1.21%)
merged +1.81% -0.78% -1.13%
true pose 3.08% 2.80% 1.07%
VH || (250%3.96%) | (2.51%3.17%) | (0.97%, 1.24%)
merged +0.58% -1.63% -1.83%
pose est. 2.34% 2.89% 1.02%
VEMH || (1.99%2.80%) | (2.49%3.77%) | (0.91% 1.19%)
merged +0.56% -1.71% -1.84%
true pose 2.35% 2.74% 1.06%
VEMH || (2.03%2.77%) | (2.32%3.69%) | (0.95% 1.22%)
Run 1 +4.10% +1.07% +0.48%
6-view 4.93% 4.67% 1.42%
VH || (4.22%6.03%) | (4.15%5.36%) | (1.29% 1.56%)
Run 2 +3.76% +0.61% +0.47%
6-view 4.38% 4.77% 1.46%

VH || (3.84%5.15%) | (4.25%,5.50%) | (1.33%, 1.65%)
mean of +3.93% +0.84% +0.48%
Run 1+2 3.85% 3.72% 1.27%

VH || (3.31%4.60%) | (3.36%,4.16%) | (1.16%, 1.42%)

Run 1 +1.68% -0.90% -1.12%
6-view 3.58% 3.18% 1.10%
VEMH || (3.13%4.36%) | (2.76% 3.82%) | (0.99% 1.23%)
Run 2 +1.54% -1.04% -1.17%
6-view 3.67% 3.05% 1.06%
VEMH || (3.25% 4.26%) | (2.64% 3.66%) | (0.96% 1.18%)
mean of +1.61% -0.97% -1.15%
Run 1+2 3.03% 2.52% 0.91%
VEMH || (2.65% 3.62%) | (2.24% 2.88%) | (0.82% 1.04%)

Table 6.4 Estimating the three caliper diameters using pairs oftsfit 6-view silhouette sets at tha resolution level. Mean
percentage error is shown in italics. RMS percentage esrsindwn in boldface with 95% confidence intervals in brackeerged

pose est. indicates that silhouette set pairs were mergeglthe proposed method. Merged true pose indicates thgrthmd truth

pose value was used for merging. VH (visual hull) or VEMH tates the method of 3D shape approximation used.
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Figure 6.13 Some examples of visual hulls of pieces of gravel. The fioiran shows original images of the gravel. The second
column shows the 15-view visual hull (formed from three Bwisilhouette sets) from the same viewpoint as the first colufine
third column shows the 15-view visual hull surfaces colduecording to which of the three original 5-view visual Budbntributes

to the surface region. The three original visual hull modetsshown to the right in corresponding colours.
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Figure 6.14 Images of pieces of gravel with visual hulls shown from thms viewpoint. The visual hulls were formed from three
images of the stones, yielding<3® = 15 silhouettes for each visual hull.
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model concavities, they exhibit regions of extra volumeenain places due to the lack of total coverage of
the viewing sphere, and they show some striations due toémaige. Nonetheless, these 3D shapes appear
to be likely to provide a better representation of partidiape than ellipsoidal models sometimes used in
simulations.

Visual hulls of gravel were used to estimate the mass of §jarticles. VEMHs were not used as the gravel
stones are nonconvex, whereas the VEMH approximates tlvexaonll of an object. The visual hull volume
is used to form a mass estimaitgs; as follows:

Mest= CW/H, (6.15)

wherecis an empirically determined constant ang is the visual hull volume. The constamé&iccounts for
both the tendency of the visual hull to be an overestimatéoniesvolume and an implicit estimate of gravel
density.

The mass estimates are limited by the extent to which graamdity varies from stone to stone. Attempts to
measure ground truth volume (using the Archimedes Prieciwpkigh each stone in air and, using a cradle,
underwater) rather than mass were abandoned, as the voleamirements were insufficiently repeatable.

Table 6.5 shows the results of gravel mass estimation. Nateunlike in the case of synthetic garnet data,
the accuracy that can be achieved is limited by both the ti@mian density from stone to stone, and the
variation in concavities from stone to stone. The table shtivat the proposed merging method produces
somewhat more accurate mass estimation results than avgthg volume estimation results from the three
original silhouette sets. The table also indicates thavitgal hull-based estimates are more accurate than
the area-based estimates.

\ mass estimatof RMS%E | 95% ClI |
merged 15-view visual hull volume 5.97% | (4.90%, 8.18%)
5-view visual hull volumes 7.63% | (6.80%, 9.41%)

mean of three 5-view visual hull volumes 6.54% | (5.62%, 8.60%)
5-view geometric mean of arga10.99% | (9.95%, 12.46%)

15-view geometric mean of arga10.11% | ( 9.04%, 11.60%)

5-view arithmetic mean of are@ 12.23% | (11.17%, 13.70%

15-view arithmetic mean of arga 11.00% | ( 9.87%, 12.52%)

U

Table 6.5 RMS percentage errors (RMS%E) and 95% confidence intefmatgavel mass estimates.

Figure 6.15 shows plots of mass versus visual hull volumeHer5-view and 15-view visual hulls. The
plots show a linear relationship between mass and visualvblume, with variability decreasing when
fifteen views are used instead of five. Note that the data pa@issociated with the largest error are gross
overestimates of visual hull volume (due to unfavourabtmetorientation), whereas gross underestimates
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Figure 6.15 Plots of gravel mass versus visual hull volume for 5-vieauail hulls(left) and 15-view visual hullgright).

of volume are not possible (in the absence of gross segnmantat calibration errors) since the visual hull
is always larger than the stone.

6.4.4 Caliper Diameter Estimation with Data from the Two-Mirror Setup

Vernier calipers were used to manually measure the longastmediate, and shortest diameter of 100 of
the stones from the gravel data set. Each stone was measueedtimes on three separate days, and the
median value was used as a ground truth value.

Figure 6.16 shows plots of the manually measured diametaesarersus estimates based on 5-view sil-
houette sets using visual hulls and VEMHSs. Silhouette-dba&stimates of the longest diameter agree more
closely with manually estimated values for the longest @itanthan for the intermediate and shortest diam-
eter.

Table 6.6 shows error statistics for estimating calipemditers using 5-view silhouette sets.

Visual hull VEMH
mean RMS | RMS adjusted| mean RMS | RMS adjusted
shortest| +8.04% | 17.01% 14.05% +3.10% | 10.78% 10.08%
intermediate| +11.49%| 15.59% 9.58% +9.85% | 14.08% 9.28%
longest| +1.01% | 1.78% 1.45% +0.15% | 0.93% 0.92%

Table 6.6 Percentage errors for diameter estimates based on 5-ileuette sets formed from the gravel data set. The ‘RMS
adjusted’ value is computed after multiplying estimatesimpnstant to compensate for systematic error.

Coefficients of variation are shown for manual and silhaibtsed caliper estimates in Table 6.7. The table
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Figure 6.16 Plot of manual caliper measurements versus estimated basg-view silhouette sets for the gravel data set using (a)
visual hull-based caliper estimates, and (b) VEMH-bas¢idhases.

manual| visual hull | VEMH

shortest|| 6.53% 4.23% 2.83%
intermediate|| 5.68% 3.60% 2.34%
longest| 1.34% 0.76% 0.42%

Table 6.7 Coefficients of variation of caliper diameters determinsthg different methods.

indicates that the manual measurements are the leastabfgeaihis means that inaccurate ground truth
may account for the high errors observed in Table 6.6. Th#iceats of variation indicate that the VEMH-

based estimates are more repeatable than those basedarhuits! For all three methods, estimates of the
longest diameter are the most repeatable, whereas estinfate shortest diameter are the least repeatable.

Figure 6.17 and Table 6.8 present the results of applyingeratiameter estimation to the 15-view merged

silhouette sets formed from the original 5-view silhousi¢s. The results indicate an improvement over the
5-view silhouette sets (see Figure 6.16 and Table 6.6).

Visual hull VEMH
mean RMS | RMS adjusted| mean RMS | RMS adjusted
shortest| +2.47% | 11.37% 10.96% -0.08% | 7.91% 7.97%
intermediate|| +9.86% | 13.91% 9.02% +9.11% | 13.75% 9.56%
longest| +0.03%| 0.75% 0.75% -0.14% | 0.77% 0.76%

Table 6.8 Percentage errors for diameter estimates based on 15silisouette sets formed from the gravel data set. The ‘RMS
adjusted’ value is computed after multiplying estimatesimpnstant to compensate for systematic error.
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Figure 6.17 Plot of manual caliper measurements versus estimated basmerged 15-view silhouette sets for the gravel data set
using (a) visual hull-based caliper estimates, and (b) VEDdded estimates.

6.4.5 Mass Estimation with Data from the Six-Camera Setup

Mass measurements were made for the data set of 1423 uncstayems (illustrated on pages 222-224)
using an electronic balance. Ten runs of 6-view silhouetdts were captured for each stone.

Mass estimates were carried out by multiplying the computsdlal hull volume by a constant factor deter-
mined from the data (Equation 6.15).

Table 6.9 presents the results in terms of RMS percentage ferrmass estimates computed using various
silhouette-based methods. The table shows that greateneatstimation accuracy is achieved using merged
visual hull volume, than by using the mean volume of the a&bi6-view visual hulls. However, both
approaches increase in accuracy as the number of runs (aod the number of available views) is increased.
Results are also shown for visual hulls that are formed Ignaip silhouette sets using the principal axes of
visual hulls or VEMHSs rather than adjusting pose to minini§eerror. These approaches produce inferior
results to the ET minimised silhouette sets, and volumenasibn error tends torcreaseas the number of
runs is increased. Results are also shown for area-basexestanates. These are substantially less accurate
than visual hull-based estimates, and show only small isgm®nts in accuracy as the number of available
views is increased. Again, mass estimates based on thegyraidareas (geometric mean) outperform those
based on the sum of areas (arithmetic mean).

Mass estimation was carried out on subsets of the 6-viewsitte sets to investigate performance using a
small number of views. Tha-view subsets are formed by discarding all but the firstews from the six
available views. The results shown in Table 6.10 indica# ¥isual hull-based mass estimates outperform
area-based methods even when as few as two views are use@vétptne first column of the table shows
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No. mean VH VEMH | geometric| arithmetic
merged : .
Runs VHvol. | aligned | aligned | area mean area mean
1 4.88% 9.21% 10.97%
(4.7,5.3) (8.8,9.8) | (10.3,11.8)
5 3.97% 4.67% 4.60% 4.61% 9.12% 10.92%
(3.8,4.3)| (4.5,5.0)| (4.4,4.9)| (4.4,4.9)| (8.7,9.7) | (10.3,11.7)
3.63% 4.66% 4.66% 4.65% 9.08% 10.92%
3
(3.5,3.9)| (4.4,5.0)| (4.5,5.0)| (4.5,5.0)| (8.6,9.6) | (10.3,11.7)
4 3.48% 4.60% 4.81% 4.77% 9.05% 10.92%
(3.3,3.8)| (4.4,5.0)| (4.6,5.1)| (4.6,5.1)| (8.6,9.6) | (10.2,11.7)
3.35% 4.55% 4.95% 4.90% 9.05% 10.92%
5
(3.2,3.6)| (4.3,4.9)| (4.7,5.2)| (4.7,5.2)| (8.6,9.6) | (10.3,11.8)
6 3.28% 4.52% 5.08% 5.03% 9.06% 10.92%
(3.1,3.6)| (4.3,4.9)| (4.9,5.3)| (4.8,5.3)| (8.6,9.6) | (10.3,11.7)
3.23% 4.49% 5.21% 5.14% 9.04% 10.92%
7
(3.1,3.5)] (4.3,4.9)| (5.0,5.4)| (4.9,5.4)| (8.6,9.6) | (10.3,11.7)
8 3.21% 4.49% 5.33% 5.26% 9.05% 10.92%
(3.0,3.5)| (4.3,4.8)| (5.1,5.6)| (5.1,5.5)| (8.6,9.6) | (10.3, 11.7)
3.20% 4.50% 5.45% 5.37% 9.06% 10.93%
9
(3.0,3.5)| (4.3,4.8)| (6.3,5.7)| (5.2,5.6)| (8.6,9.6) | (10.3,11.7)
3.18% 4.50% 5.57% 5.48% 9.06% 10.93%
10
(3.0,3.4)| (4.3,4.9)| (5.4,5.8)| (5.3,5.7)| (8.6,9.6) | (10.2,11.7)

Table 6.9 RMS percentage errors for mass estimates based on 1-1@frérgew silhouette sets of the data set of 1423 uncut
gemstones: ‘merged’ is visual hulls formed from mergingdtailable runs of silhouette sets with the proposed methoen VH
vol." uses the mean value of the 6-view visual hull volumestfie available runs; ‘VH aligned’ uses merged visual hulliee,
but without minimisation of ET error—visual hull principakes and third order moments are used instead; ‘VEMH aligumess
merged visual hull volume with VEMH principal axes and thindler moments used for merging; ‘geometric’ and ‘aritheietse
silhouette areas to estimate mass. Ninety-five percentdende interval computed using a bootstrap approach are giveackets.

cameras n-view merged geometric arithmetic
n VH 2n-view VH area mean area mean
5 13.80% 14.92% 15.99% 16.48%
(12.70%, 15.16%) (13.93%, 16.21%) (14.88%, 17.60%) (15.32%, 18.12%
3 9.67% 6.35% 13.21% 13.85%
(8.78%, 11.10%)| (5.98%, 6.84%) | (12.12%, 14.97%) (12.74%, 15.68%
4 6.41% 4.75% 10.69% 11.95%
(6.04%, 7.00%) | (4.53%, 5.06%) | (10.02%, 11.60%) (11.15%, 13.03%
5 5.25% 4.16% 9.32% 10.86%
(5.02%, 5.59%) | (3.98%, 4.42%) | (8.83%, 9.98%) | (10.24%, 11.68%
6 4.88% 3.98% 9.21% 10.97%
(4.65%, 5.25%) | (3.79%, 4.27%) | (8.73%, 9.79%) | (10.30%, 11.73%

Table 6.10 RMS percentage errors for mass estimation of 1423 uncustgeras using subsets of the original 6-view silhouette sets
‘n-view VH’ uses then-view visual hull volumes to estimate mass; ‘mergeev&Ew VH' uses visual hulls formed by merging two
runs ofn-view silhouette sets; ‘geometric’ and ‘arithmetic’ ussilhouette areas to estimate mass. Ninety-five percentdmrde
intervals are bracketed.
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a substantial increase in accuracy as the number of viewgiisdased from two to six. Merging pairs of
2-view silhouette sets produces less accurate resulttragidering the 2-view silhouette sets individually.
This is because the 2-view silhouette sets do not providieuit constraints to produce accurate alignment.
However, merging using three or more views leads to morerateunass estimates than using the original
silhouette sets before merging.

6.5 Summary

A method for merging more than one silhouette set of the sasjexinto a single large silhouette set has
been presented. The method adjusts relative pose to manitmésET error across silhouette sets. Start-
ing points for the minimisation are determined by using motaeo align 3D approximations of the object

computed from each of the original silhouette sets. When emtfhased starting points do not lead to a suf-
ficiently low ET error, starting points formed using a uniforandom rotational component are considered.

Qualitative results computed using everyday objects sadbyaanimals demonstrate that better reconstruc-
tions can be obtained from a merged silhouette set than frgnofthe original silhouette sets used to form
the merged set.

Experiments carried out using synthetic data demonstnateszblume estimates based on the merged silhou-
ette sets are more accurate than those based on the oriflinakste sets. Volume estimates computed using
silhouette sets merged by minimising ET error are close t@caarate as those computed using silhouettes
sets merged using the ground truth poses. Caliper diamstienates are also more accurately estimated
from merged silhouette sets than from the original silhisugéts.

The method is applied to data sets of stones captured usthgthm two-mirror setup and the six-camera
setup. The accuracy with which mass and caliper diameterbeastimated is quantified. Mass estimates
based on visual hull volume are demonstrated to be more atectiman those based on silhouette area.
Results are compared with estimates based on merged dibh@ets. The merged silhouette sets show
an improved accuracy for mass estimates and caliper diarastinates. The accuracy associated with
the caliper diameter estimates is likely underestimategabse of the difficultly in accurately manually
measuring the ground truth values with a Vernier calipee Sithouette-based methods are found to be more
repeatable over multiple runs than the manual measurements
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