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Abstract

Multi-view shape-from-silhouette systems are increasingly used for analysing stones. This thesis presents

methods to estimate stone shape and to recognise individualstones from their silhouettes.

Calibration of two image capture setups is investigated. First, a setup consisting of two mirrors and a cam-

era is introduced. Pose and camera internal parameters are inferred from silhouettes alone. Second, the

configuration and calibration of a high throughput multi-camera setup is covered.

Multiple silhouette sets of a stone are merged into a single set by inferring relative poses between sets.

This is achieved by adjusting pose parameters to maximise geometrical consistency specified by the epipolar

tangency constraint. Shape properties (such as volume, flatness, and elongation) are inferred more accurately

from the merged silhouette sets than from the original silhouette sets.

Merging is used to recognise individual stones from pairs ofsilhouette sets captured on different occasions.

Merged sets with sufficient geometrical consistency are classified as matches (produced by the same stone),

whereas inconsistent sets are classified as mismatches.

Batch matching is determining the one-to-one correspondence between two unordered batches of silhouette

sets of the same batch of stones. A probabilistic framework is used to combine recognition by merging

(which is slow, but accurate) with the efficiency of computing shape distribution-based dissimilarity val-

ues. Two unordered batches of 1200 six-view silhouette setsof uncut gemstones are correctly matched in

approximately 68 seconds (using a 3.2 GHz Pentium 4 machine).

An experiment that compares silhouette-based shape estimates with mechanical sieving demonstrates an

application using the developed methods. A batch of 494 garnets is sieved 15 times. After each sieving,

silhouette sets are captured for sub-batches in each bin. Batch matching is used to determine the 15 sieve

bins per stone. Better estimates of repeatability, and better understanding of the variability of the sieving

process is obtained than if only histograms (the natural output of sieving) were considered. Silhouette-based

sieve emulation is found to be more repeatable than mechanical sieving.
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Chapter 1

Introduction

1.1 Overview and Motivation

Silhouette images of a stone provide cues for (1) inferring properties of the imaging system, (2) inferring

properties of the 3D shape of the stone, and (3) recognising the stone from previously stored silhouettes.

This thesis addresses these inference and recognition problems.

Silhouette images are frequently used in computer vision applications as a simple and robust means for

inferring the shape properties of 3D objects. For instance,thevisual hull is the largest object consistent with

a set of silhouettes captured from known viewpoints. Shape-from-silhouette often involves using the visual

hull to approximate the 3D shape of the object that produced the silhouettes.

Since, under controlled conditions, foreground and background regions in an image can be distinguished us-

ing simple and reliable methods, shape-from-silhouette approaches have become popular in the geosciences

for measuring 3D size and shape properties (such as volume, elongation, and flatness) of individual stones

or other rigid particles∗. Such information is useful for many purposes ranging from value estimation of

gemstones to predicting the strength of concrete.

This thesis aims to extend the functionality of silhouette-based particle analysis by developing and analysing

new algorithms that are based on recently-developed ideas in the field of computer vision. The application

of silhouette-based techniques to stones rather than general objects provides the useful constraint of rigidity:

the 3D shape of the imaged object is assumed not to vary over time.

Multiple silhouette views of individual particles provideinformation that will be used for different purposes:

1. inferring characteristics of the imaging system (cameracalibration),

∗The termparticle is commonly used in the geosciences literature to refer to stones, rock fragments, coarse aggregate, mineral
grains, pebbles, and so on.
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2. inferring particle size and shape properties, and

3. recognising individual particles from their silhouettes.

The following sections briefly overview these three topics.

1.1.1 Camera Calibration

When the imaging characteristics (such as the camera’s focal length and principal point) and pose (position

and orientation) associated with silhouettes are known, then the silhouette set iscalibrated. Once the values

of calibration parameters are known, it is possible to determine the 3D rays corresponding to 2D points on

the silhouette images in a common reference frame. Camera calibration† is an important first step for both

the recognition and 3D shape analysis algorithms developedin this thesis.

Traditionally, camera calibration has been achieved by observing the image locations of points with known

3D coordinates. Camera parameters are estimated by minimising the difference between observed image

points and those predicted by the parameterised camera model.

More recently, there has been interest in self-calibration[40, 58]. Self-calibration solves the calibration

problem without using images of marker patterns whose 3D coordinates are known in advance; instead, the

images themselves are used (e.g., images of stones in the context of this thesis). Corresponding scene points

whose 3D coordinates are initially unknown are used to simultaneously compute both the 3D coordinates

and the camera parameters in a process known as bundle adjustment. There has also been activity in self-

calibration using silhouettes instead of point correspondences. To render the problem tractable, some form

of additional information is incorporated, such as knowledge that the silhouette set is a circular motion

sequence. In many approaches to calibration, an initial non-optimal solution is computed using a closed-

form solution. The solution is then refined using iterative optimisation. This is the approach taken for

calibrating the setups that are used in this work.

This thesis investigates the possibility of self-calibrating camera setups for capturing multiple silhouette

views of stones. Two types of setups are used for capturing silhouette sets of particles: a setup consisting of

two mirrors and a single camera, and a setup consisting of multiple simultaneously triggered cameras (see

Figure 1.1).

The mirror setup provides a simple means for capturing silhouette images of stones using only readily avail-

able equipment. Two mirrors are used to create a scene containing five views of an object. The five views

are captured in a single image. It will be shown that the silhouettes impose geometrical constraints that can

be used to calibrate each silhouette view.
†In certain contexts, camera calibration may refer toradiometriccamera calibration. In this thesis, camera calibration is limited

to geometriccamera calibration: inferring camera poses and internal parameters.
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Figure 1.1: The two image capture setups considered in this thesis(top), and examples of corresponding captured images(bottom).
The two-mirror setup(left) provides a simple low cost means of capturing silhouette sets of stones, whereas the six-camera setup
(right) enables high throughput imaging.

The multi-camera setup is a high throughput alternative to the mirror setup. It was constructed by a team of

engineers from the company that commissioned part of the work described in this thesis. The multi-camera

setup is calibrated using images of balls (spheres). The useof ball images aids two aspects of the calibration

procedure: (1) forming an initial parameter estimate, and (2) enforcing absolute scale. Since the distance

from the cameras to the ball is large with respect to the ball size, the Tomasi-Kanade [129] factorisation

method can be used to give a good initial estimate to the calibration parameters. Silhouette centres are used

as approximate point correspondences across multiple views. The calibration parameters are then iteratively

refined using geometrical constraints imposed by the silhouette boundaries.

1.1.2 Size and Shape Properties

Information about particle size and shape is used in the gem industries, mining, and the geological sciences.

The longest, intermediate, and shortest diameter of individual particles are typically recorded, and properties

such as flatness, elongation, sphericity, or compactness are derived from the three diameter values. Manually

measuring the three diameter values is tedious, time-consuming, and error prone. Machine vision systems
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that estimate shape properties from multiple silhouette views therefore provide the potential for saving time

and removing the element of human error.

Particle size is also often one of the most important properties of interest. Volume is usually the most

desirable measure of size [133], yet sizing of particles hasbeen historically carried out using sieves. Sieves

provide only a distribution of sizes of a batch of particles (a histogram), rather than individual per-particle

measurements. Machine vision systems can estimate particle volume as well as emulate sieving. Since

machine vision systems can consider one stone at a time, different shape properties can be measured for each

stone, allowing multi-dimensional distributions to be derived for a batch of stones.

It is not the goal of this thesis to analyse the shape of particles withrespect to any industrial or environmental

process, but rather to investigate algorithms and methods that will provide this means (and other related tools)

to particle shape analysts. These include geologists, civil engineers, as well as technicians and researchers

from the gem industries, mining, and the geological sciences.

Shape measurements such as particle volume, elongation, orflatness are not the ultimate output of the

silhouette-based methods described in this thesis. These are a set of measurements that are often useful

to particle shape analysts. Since these shape measurementsare commonly-used they are selected as one of

the means of quantifying the performance of the silhouette-based methods. For instance, the performance of

the new self-calibration methods is quantified in the terms of the accuracy with which these shape properties

can be estimated.

It is worth noting that in recent years, particle shape analysts increasingly require 3D shape models of par-

ticles (typically triangular mesh models) rather than values of shape properties (e.g., volume, elongation,

flatness) that summarise particle shape. The 3D shape modelsmay be used as input to simulations car-

ried out using a finite element analysis software package, for instance. Using 3D mesh models of particles

rather than (say) ellipsoids with the same moments up to order two, provides the potential for more accurate

simulations.

1.1.3 Recognition

Although the computer vision literature contains an abundance of articles on image-based biometrics appli-

cations, such as recognising people from their faces or fingerprints, individual particle recognition does not

appear to have received attention in academic literature.

This thesis introduces silhouette-based recognition of individual particles as a research and processing tool

for particle analysis. Recognition (or matching) systems are commonly used forverificationor identification.

Identification and verification of stones from silhouette sets is potentially useful for (1) verifying gemstone

origin, and (2) tag stone identification:
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1. Gemstone origin verification. Verification is a potentially useful tool for high value particles such

as uncut gemstones. A silhouette set of a stone can be compared with a silhouette set on record to

confirm that the two silhouette sets correspond to the same stone.

2. Tag stone identification. Gemstone miners often ‘spike’ mines with gemstones of knownmass (so-

calledtag stones). The tag stones are retrieved after processing to audit theperformance of the recovery

process. Currently, tag stones are recovered by humans who identify them by their mass and by

manually comparing them with previously captured photographs. This is a time-consuming procedure.

The methods developed in this thesis are applicable to the problems of gemstone origin verification and tag

stone identification. However, the main recognition task addressed by this thesis is the one-to-one matching

of an unordered batch of stones captured on two separate occasions: asquare assignmentproblem. The

problem is potentially more difficult than identification orverification, since each ofn silhouette sets in the

first run‡ must be matched to one of then silhouette sets in the second run. The matching can be specified by

ann×n permutation matrix in which each element is either one or zero (indicating match or mismatch), and

each row and each column sums to one. The nature of the batch matching problem is illustrated in Figure 1.2.

The ability to match up silhouette sets of an unordered batchof stones across two runs (batch matching) is

potentially useful for several applications:

1. Batch matching can be used to measure the repeatability oraccuracy of a stone classifier. The classifier

could be, for example, a mechanical classifier such as a sievewhich classifies stones into different sieve

bins according to size, or a human classifier, such as a personwho sorts gemstones into different piles

according to colour. (Piling the stones enables efficient sorting, since there are far fewer classes than

stones.) Stones are passed through the multi-camera setup after class labels have been assigned. (To

keep a record of class labels for each silhouette set, it is easiest to pass the stones through the camera

setup in sub-batches of the same class label.) Batch matching will determine the different class labels

that each stone has received after being classified on multiple occasions.

2. Batches of stones are used by various laboratories for research purposes. The stones are often stored

in trays with one stone per compartment so that each stone canbe uniquely identified. This means of

storage can become impractical for large batches of stones (of more than about 100 stones). Properties

of the individual stones (such as volume, density, or hardness) may be measured and recorded for the

individual stones at different times. With batch matching technology, the stones need not be separately

stored as the matching process can be used to reconcile the information.

3. This thesis will demonstrate how to merge several silhouette sets of the same particle into a single

large silhouette set in which all silhouettes are specified in a common reference frame. More accurate

estimates of the 3D particle shape can be made from the mergedset than from any of the individual

‡In this thesis, the termrun is used to refer to a batch of silhouette sets in which one silhouette set is captured for each stone.
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Figure 1.2: The batch matching problem: each six-view silhouette set in the first run(top row)must be matched to the corresponding
silhouette set in the second run(bottom row)using only the silhouette images and corresponding camera calibration information.
Coloured arrows show the desired unknown correspondences:pairs of silhouette sets generated by the same stone. The problem
is difficult because (1) the stones are ordered arbitrarily,and (2) the stones are oriented arbitrarily. The efficient batch matching
algorithm developed in this thesis rapidly estimates the 3Dshape of a stone from its silhouettes to identify likely matches. Pairs of
silhouette sets that are geometrically consistent with being produced by the same stone are then sought. This illustration shows a
small data set ofn = 4 stones; in practice, data sets will contain hundreds or possibly thousands of stones.
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sets. Batch matching allows an unordered batch of stones to be passed through the multi-camera setup

several times so that merged silhouette sets can be formed for each stone. Passing unordered batches

of stones through the multi-camera setup is quicker than passing individual stones through one at a

time.

1.2 Research Objectives

The principal objective of this thesis is to develop new algorithms to solve the problems of self-calibration,

recognition, and particle shape analysis using multi-viewsilhouette sets of particles.

A portion of the work presented in this thesis was carried outas part of a project commissioned by a company

that wishes to remain anonymous. The nature of this company’s specific uses for the developed methods lie

outside the scope of this thesis. However, the methods are byno means applicable only to gemstones.

Data sets of uncut gemstones (in addition to garnets and gravel) were used as test sets in this work as these

were made available by the commissioning company. Indeed, many of the methods developed here have

broader application scope than particle analysis, and can be applied to other objects. Three-dimensional

shape reconstruction for multimedia content creation is anexample of an application that will benefit from

some of the methods developed in this thesis. For cases in which the methods are applicable to general

objects, experiments and examples will therefore be given for objects other than stones. Particle analysis,

however, is the unifying theme for the topics covered.

Within the topic ofshape and size, the aim is to develop algorithms for estimating propertiesthat are com-

monly used by particle shape analysts. These methods are to then to be used in conjunction withcalibration

andrecognitionmethods to quantify the accuracy and repeatability of such systems.

Systems that compute the 3D shape of particles must trade offthe desirable characteristics of accuracy,

throughput and affordability (in terms of monetary cost). This thesis investigates two multi-camera setups:

(1) a highly affordable setup that uses two mirrors to generate multiple views, and (2) a high-throughput

system that uses six simultaneously triggered cameras. Thegoal is to develop separateself-calibration

algorithms for the two setups.

A further goal within the topic ofcalibration is to demonstrate that multiple silhouette sets of a particle

can be merged into a single large silhouette set in which all silhouettes are specified in a common reference

frame.

The major objective within therecognitioncomponent of this thesis is to develop anefficientmethod for

solving the batch matching problem (as illustrated in Figure 1.2). (In this thesis efficiency will always refer

to the speed of execution, as opposed to, for example, memoryefficiency.) To achieve this objective, it is

useful to break it down into several components:
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1. The aim of the first component is to determine, as efficiently as possible and preferably without error,

whether a pair of silhouette sets corresponds to the same stone (a match) or not (a mismatch).

2. The aim of the second component is to develop a rapid means of identifying candidate matches by

assigning a dissimilarity score to silhouette set pairs.

3. The aim of the third component is to combine the first two components to create an algorithm that

makes use of the accuracy of the first component and the efficiency of the second component to solve

the batch matching problem.

The final objective of this thesis is to demonstrate the use ofthecalibration, recognition, andshape analysis

tools by showing how they can be used together to solve a practical problem: estimating the repeatability of

mechanical sieves and comparing the repeatability with a machine vision emulation of sieving.

1.3 Contributions

The most important novel components of this thesis are the following:

1. The analysis of viewing edges is introduced as an alternative to the visual hull for efficiently estimating

3D shape properties of stones. Viewing edge midpoints are demonstrated to provide more accurate

estimates of 3D properties such as caliper diameter measurements (longest, shortest and intermediate

diameters). The viewing edges are demonstrated to impose geometrical constraints from which the

upper and lower bounds of a stone’s longest and shortest diameters can be computed from its silhouette

set.

2. A novel, low cost mirror-based setup for capturing multiple silhouette views is described, and algo-

rithms for self-calibration are developed. The method provides an accessible and affordable method

for 3D shape reconstruction of stones. The method is not limited to 3D reconstruction of stones and

has been applied to objects other than stones (e.g., toy animals). It can be used as a simple method for

creating 3D multimedia content for people who do not have access to expensive equipment.

3. Calibration of a simultaneously-triggered six-camera setup is achieved by combining two existing

approaches to calibration. Initial parameter estimates are determined using approximate point corre-

spondences and the Tomasi-Kanade method [129]. The initialparameter estimates are then refined by

minimising a cost function based on the outer epipolar tangents [138].

4. A new pose optimisation method for merging several silhouette sets of the same object into a large sil-

houette set is developed. The method allows one to generate an arbitrarily large number of silhouettes

of an object in a common reference frame using an image capture setup that generates a small number

of views. A merged silhouette set provides a more accurate 3Dreconstruction and tighter constraints

on 3D shape than any of the original silhouettes sets from which it was formed.
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5. The use of the residual error associated with a merged pairof silhouette sets is demonstrated to be an

effective indicator of whether the pair corresponds to two silhouette sets of the same stone (a match)

or to two silhouette sets of two different stones (a mismatch).

6. An existing shape matching method [103] based on shape distributions is adapted to create a rapidly

computable method for assigning a measure of dissimilaritybetween two silhouette sets. A batch

matching algorithm is then developed to use both the rapidlycomputable dissimilarity measures and

the pose optimisation method, to match two runs of silhouette sets of an unordered batch of stones.

The important feature of this batch matching algorithm is its efficiency: a test set of 1200 stones is

correctly matched across two runs in approximately 68 seconds on a 3.2 GHz Pentium 4 machine.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows.

Chapter 2 provides a short historical overview of particle shape analysis in the geosciences. This is provided

because (1) computer vision researchers are unlikely to be familiar with the geosciences literature on this

topic, and (2) this presents a historical background of the work that this thesis extends by developing new

algorithms and methods. First, definitions of shape properties that are of interest are covered, and some

examples of their uses are given to demonstrate that particle shape analysis is a broad field with diverse

goals. Next, silhouette-based machine vision systems thathave been designed to measure particle shape

properties are covered.

Chapter 3 introduces background theory on the geometry of silhouettesets that will be used to develop the

methods described in later chapters. The concept ofsilhouette consistencyis introduced and two methods

that will be used throughout the thesis are described: (1) a new silhouette-consistent estimate of 3D shape,

the viewing edge midpoint hull (VEMH), which will be used forestimating 3D shape properties and as

a component of the matching process, and (2) an existing measure of silhouette consistency based on the

epipolar tangency constraint that will be used for calibration and for matching.

Chapter 4 describes a novel low cost image capture setup based on two plane mirrors. The chapter describes

how the camera parameters associated with silhouette viewsof an object can be computed from the silhou-

ettes alone: there is no need for calibration markers. Sincethe method can be used to reconstruct the 3D

shape of a broader class of objects than stones, results are demonstrated using both stones and other objects.

Chapter 5 covers the geometric configuration and calibration of a high-throughput alternative to the image

capture setup described in Chapter 4. Heuristics are introduced that are used to determine the positioning

of the cameras. A calibration routine based on silhouette images of a ball is described. Balls of known

dimension allow scale to be enforced, and ball images allow an approximation based on Tomasi-Kanade

factorisation method to be used for forming initial parameter estimates.
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Chapter 6 shows how silhouette sets of the same particle captured in different poses can be merged into a

single large silhouette set by minimising the degree of geometrical inconsistency across the silhouettes. Re-

sults computed using both stones and other objects are presented. The method is applied to objects captured

with the mirror-based setup described in Chapter 4 as well asthe six-camera setup described in Chapter 5.

Chapter 7 shows how the pose optimisation and associated error described in the previous chapter is used for

matching orrecognisingparticles from their silhouettes. Other measures of silhouette consistency are cov-

ered. The methods are applied to data sets of stones capturedusing the mirror setup and the six-camera setup.

Chapter 8 develops a method of rapidly computing a measure of dissimilarity between two silhouette sets.

The method is based on the shape distributions of Osada et al.[103], but is modified to improve efficiency in

the context of silhouette sets of stones. This includes using the VEMH introduced in Chapter 3 as an estimate

of the 3D convex hull of the stone.

Chapter 9 describes a method for efficiently finding the one-to-one correspondences between silhouette

sets from two runs of the same batch of stones. The method makes use of the efficiency of the matching

approach described in Chapter 8 together with the accuracy of the slower method described in Chapter 7. A

probabilistic framework is used to achieve efficiency: a likelihood ratio (indicating the likelihood of being

a match) is associated with each silhouette set pairing across the two runs. Likelihood ratios are updated

using Bayes’s rule as new information is added from the results of pose optimisations. A greedy algorithm is

shown to provide a tractable solution that produces excellent results in terms of running time and accuracy.

Chapter 10describes an experiment that makes use of the main ideas developed in this thesis: batch match-

ing, estimating shape properties, and calibration. The experiment estimates the repeatability of mechanical

sieving by determining which stones fall into which bins over multiple runs of sieving. Knowing the sieve

bins associated with each particle allows repeatability tobe estimated more accurately than if only the bin

counts were known for each run. The repeatability of the mechanical sieving process is compared with a

machine vision emulation in which sieve bin classification is computed using silhouette sets.

Chapter 11 concludes the thesis by reviewing the main contributions and summarising the work. Ideas for

future work are identified.
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Chapter 2

An Overview of Particle Shape Analysis

2.1 Introduction

This chapter provides a historical overview of particle shape and size analysis that is drawn mainly from the

geosciences literature. It is shown how interest has grown in using silhouette-based machine vision methods

to quantify particle shape properties. Initially, single-view systems were used, and more recently there has

been interest in multi-view systems.

The content of this chapter is not required for understanding the methods developed in this thesis. Readers

who are not interested in a historical overview may wish to skip this chapter, and continue reading Chapter 3

on page 25.

2.2 Quantifying Particle Shape

Particle shape analysts in a range of different fields (for example, geomorphologists, civil engineers, process

engineers, hydrologists) are interested in summarising the size and shape (sometimes termed ‘form’) of

particles using a small number of features.

Volumeis usually the preferred measure of size [133]. The volume ofa particle can be used to estimate

weight (if density is known), or to estimate density (if weight is known). Size distributions play an important

role in determining particle packing and porosity characteristics in asphalt mixes [109]. In the gem industry,

individual particle volume is closely (and nonlinearly) related to the monetary value of each gemstone.

Historically, sieving has been used to characterise the size distributions of large batches of particles, because

of the high throughput that can be achieved.
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Although there are some differences in their precise definitions, thelong, intermediate, andshort diameters

of a particle are frequently used to summarise its shape. These three diameters are sometimes referred to as

thea, b, andc diameters, respectively [70]. Oftena is defined as the longest diameter (a is termed simply

thediameterby computational geometers),c is the shortest diameter (termed thewidthby computational ge-

ometers), andb is the diameter measured in the direction that is perpendicular to the directions corresponding

to a andc [131]. Note that these diameters arecaliper diameters; in other words, they represent distances

between parallel plane pairs that are tangential to the particle. Different variations on the definitions include

measuring the caliper diameters along the principal directions (as determined by the inertia tensor) [4, 127],

and requiring the long diameter to be measured perpendicular to the shortest diameter [71], or requiring the

short diameter to be measured perpendicular to the longest diameter [41].

Thea, b, andc diameters are measured in various ways. Manual measurements include the use of a sliding

rod caliper [70], Vernier calipers [59], and a ruler [83]. Automated methods include the use of 3D laser

scanning [71], X-ray tomography [82], and silhouette-based machine vision [87].

The three diameter values are frequently used to provide dimensionless quantifications of particleelongation

andflatness. Two common formulations specify elongation as the ratioa/b, and flatness as the ratiob/c [6].

A measure of sphericity (the degree of compactness) is also often derived from the three parameters. Krum-

bein’s commonly used definition [70] is

sphericity= 3

√

bc
a2 . (2.1)

Zingg’s diagram [144] is a popular means for classifying particles into one of four shape categories and for

visualising the distribution of shape for a batch of particles (see Figure 2.1). Zingg classified particles into

the classes oblate (disk-shaped), spherical (compact), bladed (triaxial) and prolate (rod-shaped), based on

the ratiosb/a andc/b. For each particle, they-coordinate of its data point isb/a, and thex-coordinate isc/b.

Using a threshold of2/3, the data points that lie in the top left quadrant are oblate;the lower left are bladed;

the upper right are spherical; and the lower right are prolate. Hyperbolic contour lines can be plotted on the

standard chart so that sphericity values can be read off.

It is interesting to note Joshi and Bajcsy’s discussion (within the field of linguistics) on the ways in which

humans interpret shape [66]. The terms ‘flat’, ‘elongated’ and ‘round’ are listed as some of the few non-

template-based terms that humans tend to use to describe 3D shapes. Joshi and Bajcsy’s ‘roundness’ refers

to what is termed ‘sphericity’ in the geosciences literature. People prefer template-based descriptions such

as ‘star-like’.
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Figure 2.1: Zingg’s diagram [144] for classifying particle shapes from thea, b, andc diameters.

2.3 A Range of Analyses of Particle Shape

To provide an indication of the wide range of subjects that make use of measurements of individual particle

shape, this section provides a brief description of a few of the studies described in the literature. In many

cases, it appears that these types of studies will benefit from modern silhouette-based machine vision methods

for quantifying particle shape.

2.3.1 Ice-Rafted Pebbles

Hassler and Cowan [59] collected 331 pebbles from drill sites on the Antarctic Peninsula. The long, interme-

diate, and short axes were manually measured using Vernier calipers. Together with other evidence, the shape

measurements were used to support the hypothesis that the pebbles had been transported as supraglacial de-

bris.

2.3.2 Alluvial Gravel

Lindsey and Shary [83] assessed alluvial gravel deposits bymeasuring the long, intermediate and short

diameters of 150 pebbles from three locations along the South Platte River in Colorado. The measurements

were performed manually using a ruler. They show that the proportion of equidimensional particles increases

downstream. The study aims to predict the downstream limit of gravel production (mining) and of post-

mining land uses.
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2.3.3 Gold Grains

Wierchowiec [136] uses Zingg diagrams to visualise the shapes of gold grains from different sources. Gold

grains from preglacial and alluvial deposits are observed to be bladed, whereas those from piedmont fan

sediments tend to be oblate. Factors such as hammering and folding during transport, and reflattening after

folding account for the variations in shape.

2.3.4 Anthropogenic Fragment Redistribution

Nyssen et al. [100] monitored rock fragment transportationin the stepped mountains of Ethiopia over a

four year period. Limestone rocks were used as tracers sincethe existing rocks were basalt and sandstone

(painted rocks were not used since they may have been picked up by shepherds). The long, intermediate, and

short diameters were used to replace basalt and sandstone rocks with limestone tracers of approximately the

same shape. The authors show that the degree of tracer transportation over the years is related to the degree

of over-grazing by livestock and conclude that livestock trampling appears to be an important geomorphic

process.

2.3.5 Estimating Particle Properties with Computer Simulations

Computer simulations of a large number of particles often make use of simplified models of particle shape.

For instance, a sample of particles may be modelled using ellipsoids with the same volume, flatness, and

elongation. Sims et al. [119] use ellipsoidal models of the aggregate particles in concrete to investigate strain

rate. They demonstrate that particle flatness and elongation play an important role in determining concrete

viscosity.

Rather than using simple ellipsoidal models, Bullard, Garboczi, and coworkers [20,52] take advantage of the

power of modern desktop computers to model concrete using 3Dshapes based on real aggregate particles

(see Figure 2.2). Using particle shape based on real particles rather than simpler ellipsoidal models has

the potential to provide more accurate simulations. The 3D shape of real aggregate can be determined

using X-ray computed tomography, and then be included in their computer simulations. The authors aim to

use computer modelling to replace empirical testing for predicting concrete properties such as the degree of

hydration, pore percolation, diffusivity, and yield stress viscosity. Simulation predictions of certain properties

such as elastic moduli have been shown to agree closely with values obtained in real experiments.

14



(a) (b)

Figure 2.2: Computer simulations of concrete using 3D shapes based on real particles: (a) modelling concrete flow (picture
from Bullard et al. [20]), (b) simulation of coarse aggregate in a mortar matrix flowing under mixing forces (picture fromGar-
boczi et al. [52]).

2.4 Single View Silhouette-Based Particle Analysis

Other than shape, particle shape analysts are also interested inangularity androughness. These properties

are not addressed by this thesis, but are mentioned here since the first attempts at image-based particle

analysis were attempts to measure these properties. Beforeimage-based methods were used, angularity was

determined by comparing particles with Krumbein’s standard chart [70].

Schwarcz and Shane [117] use Fourier coefficients of the boundary of a particle projection (Fourier de-

scriptors) to derive several procedures for quantifying angularity. First, they describe how measurements of

sphericity and angularity might be derived from a 3D model ofthe stone. They point out that 3D models are

rarely available and proceed to present their measurementsthat are based on computing the Fourier descrip-

tors of a 2D projection of the stone. A measurement for sphericity is given as the mean squared deviation

between the silhouette boundary and the circular boundary defined by the first Fourier descriptor. The au-

thors investigate several methods for measuring angularity based on Fourier descriptors. One such method

involves determining the number of Fourier coefficients that are required to reconstruct the boundary so that

it fits the original boundary to within a specified tolerance.This type of measurement varies according to

surfaceroughnessas opposed to angularity.

Ehrlich and Weinberg [37] show how Fourier descriptors can be used to discriminate grain differences aris-

ing from geographic, stratigraphic, and process factors. Plots of the average values of the first ten harmonics

are used to discriminate between grains from three different geographical regions with a high success rate.

The same method is used to show how grain shape varies according to its position in the soil profile. Var-

ious means for defining roughness coefficients based on summing a range of Fourier coefficients are also

suggested.
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Diepenbroek et al. [31] give yet another definition of roundness using Fourier descriptors. They discard

the first two Fourier coefficients, which describe an ellipse, and form a weighted sum of the remaining

coefficients, with the higher order coefficients receiving greater weight. The method was used to detect

changes in roundness of gravel clasts being transported down mountain rivers. Changes over distances as

small as 7 km could be detected. Drevin et al. [32, 33] investigate means other than Fourier descriptors

for determining particle roundness. Wavelet and granulometric methods are considered. They show that

their methods and the method of Diepenbroek et al. both produce results that correlate well with the values

indicated by Krumbein’s chart.

2.5 Multi-View Silhouette-Based Particle Analysis

Since using single silhouette views results in the loss of information about the third dimension, there has

recently been research directed towardsmulti-view silhouette-based particle analysis. The goal of these

methods is to extract information about the three-dimensional shape of individual particles from multiple

silhouette views.

It is the objective of this thesis to extend this line of research by designing algorithms that are based on the

shape-from-silhouette ideas that have been developed in the field of computer vision.

2.5.1 Multiple Views from a Single Camera

Several groups of researchers have considered means for obtaining multiple silhouette views of a particle

using a single camera. Typically this involves moving the particle and capturing images at different instants

in time (although Chapter 4 of this thesis introduces a method in which different silhouette views are captured

simultaneously using mirrors). Using a single camera and moving the particle has the advantage of lower

monetary expense than a multiple camera setup, but this comes at the cost of requiring more time to capture

the images.

Motivated by the high monetary expense of laser scanning andtomographic methods, Taylor [126] and

Lau [72] investigate the use of silhouettes as a cheaper alternative to quantify particle shape. A setup con-

sisting of a turntable with two orthogonal axes of rotation (see Figure 2.3) is used to view a rock from any

direction. Individual rocks are glued to a rod, and images are captured from well-distributed viewpoints. A

ball of known diameter is used to calibrate the setup. The calibration simply provides a conversion from

pixel units to millimetres (and therefore implicitly assumes that depth variation is sufficiently small to have

negligible effect on scale). Taylor and Lau are aware of the visual hull concept, as it is noted that silhou-

ettes place a restriction on the volume of space that contains the object, and a computer vision paper of

Laurentini [74] is cited. However, they decide to limit their initial investigations to estimating volume us-

ing silhouette area. Silhouette area averaged over 13 viewsis computed for 126 rocks (crushed granite and
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Figure 2.3: Three images from a sequence captured using a turntable device for rotating individual rocks about two different axes
(top row), and the corresponding manually segmented silhouettes(bottom row)(pictures from Lau [72]). The images were used to
investigate volume prediction from multiple silhouette views.

rounded conglomerate rocks from a river bed). Plots of average silhouette area versus weight show a high

degree of correlation.

Chen et al. [25] measure the short, intermediate, and long diameters of a sample of aggregate particles by

attaching the particles to a clear plastic tray with two perpendicular faces. The particles are imaged from two

perpendicular directions by rolling the tray onto each of the two faces. Diameter values are measured from

the silhouette images. Elongated and flat particles are demonstrated to produce hot-mix asphalt with lower

compactibility and higher breakage than compact particles. The use of a tray with the perpendicular faces

for imaging stones from perpendicular directions is also described by Frost and Lai [50].

Fernlund [41] describes a method for capturing multiple views in which particles are moved by hand. Two

views are captured for the particles: a side-on view and a topview. To capture the side-on view, the particles

are manually positioned on a luminous background in a stableposition so that their maximum projected area

is observed by an overhead camera. To capture the top view, the particles are manually positioned in an

upright position in a bed of luminous beads and sand. The bed allows the particles to be placed in a stable

position with their longest axes parallel to the viewing direction. The principal benefit of the method is its

low cost. Multiple particle silhouettes are captured in each image. Longest and intermediate diameters are

measured from the side-on image, and shortest and intermediate diameters are measured from the top-view

image. To find the corresponding silhouette pairs for each particle, the silhouettes are sorted by intermediate

diameter value, which is assumed to be the same across the twoimages. Although it is acknowledged that

this assumption may not hold in all cases, the method is reported to provide results that correlate well with

manual measurements.
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Commercial shape-from-silhouette systems for characterising gemstone shape are produced by Sarin, an

Israeli company, and by Octonus, a Russian company [78]. These systems build 3D visual hull models of

individual rough gemstones to aid gemstone cutters. Multiple silhouette images of the rough gemstone are

captured by a single camera as the stone is rotated on a turntable. The rotation of a stone takes approximately

25 seconds. An optional laser range-finder can also be used tobuild 3D models of rough gemstones with

concavities.

2.5.2 Multiple Views from Multiple Cameras

Multiple simultaneously triggered cameras provide the potential of greater throughput than multi-view single

camera setups. For this reason, various multi-camera setups have been designed over the last decade. The two

most prominent multi-camera silhouette-based particle analysis systems described in the academic literature

are the WipFrag system and the University of Illinois Aggregate Image Analyser.

WipFrag

The WipFrag system was developed at the University of Missouri-Rolla by Maerz et al. [86, 87]. It consists

of two orthogonally mounted cameras that simultaneously image individual particles (see Figure 2.4).

Figure 2.4: The WipFrag system. (Picture from Al Rousan [111])

The WipFrag system is used to estimate the aspect ratios and volumes of individual particles from silhouette

images. Elongation, flatness, and volumes are derived from measurements of length, width and height.

Length and width are measured from the top-view image and height is measured from the other. Length is

the longest caliper diameter of the silhouette, and width isthe caliper diameter measured perpendicular to

the length. Height is measured from the side-view image. It is the caliper diameter measured in the direction

of the top-view camera. The measured lengths are reordered if necessary so that length is longer than width,

which is in turn longer than height.
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Aspect ratio is the ratio of length to height. Volume is estimated with the following experimentally deter-

mined equation:

volume= 0.8× length×width×height. (2.2)

The vision-based methods were compared with manual calipermeasurements of aspect ratio [86], whereas

results for volume estimation are not shown. The vision-based methods are found to be close to the manual

measurements in most cases; closeness is not, however, quantified.

The University of Illinois Aggregate Image Analyser

The University of Illinois Aggregate Image Analyser (UIAIA) is the most sophisticated system for estimating

stone shape from silhouettes that is described in the academic literature. It is the only setup that creates a 3D

model of each stone from multiple silhouettes. The 3D modelsare used for volume estimation.

The UIAIA setup consists of three orthogonally mounted cameras. A conveyor system presents the stones

to the cameras (see Figure 2.5). Images are captured as each particle triggers a motion sensor. Explicit

Figure 2.5: The UIAIA: a three-camera setup at the University of Illinois (picture from Rao [109]).

calibration of camera poses is not carried out. Rather, the cameras are orthogonally positioned, and images

of spheres are used to ensure that the effective scale factors are the same across the three views. This approach

implicitly assumes that the depth variation of each stone issufficiently small with respect to the distances to

the cameras that perspective distortion can be ignored. Theonly explicit calibration that is carried out is to

use images of a sphere to determine the scale factor (that is,a mapping of pixels to millimetres).

Volume estimates are made by computing a three-view visual hull of the stone. However, the term visual

hull is not used, and the method seems to have been developed independently from (and without reference

to) shape-from-silhouette approaches described in the computer vision literature. To compute the visual hull,
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Figure 2.6: Computing the visual hull from three orthogonal views (picture from Rao [109]).

voxels that do not project onto the silhouette foreground inall three images are removed, leaving an estimate

of the 3D shape of the stone (see Figure 2.6).

Volume computation is applied to four spheres of known volume to test the accuracy of the voxel-based

visual hull volume estimates [109]. The largest sphere’s computed visual hull volume ranges from 101.38%

to 102.84% of the sphere volume (5 trials), whereas the smallest sphere’s computed visual hull volume ranges

from 105.77% to 107.60% of the sphere volume (5 trials).

Since the exact 3-view visual hull of a sphere (from three orthogonal orthographic views) is 11.9% larger

than the sphere (see Figure 2.7), it is unsurprising that thevisual hull volume produces an overestimate when

used as an approximation of the volume of the imaged object. Inaccuracies in the assumed orientation of the

cameras and image noise tend to result in a computed visual hull that is smaller than the exact visual hull,

since visual hull voxels are required to project to foreground region inall views. Because of this, a real setup

can be expected to produce values lower than 11.9%.

The description of the UIAIA experiments makes no mention that the 3-view visual hull volume is expected

to be larger than the sphere. Spatial quantisation error is given as the reason that the smallest sphere’s results

(which are closest to the noise-free ideal of 11.9%) correspond to the greatest error when using visual hull

volume as an estimate of the volume of the imaged object.

In a further experiment, visual hull volumes are used as an estimate of stone volume for 50 pieces of ag-

gregate. Ground truth values are obtained by weighing the stones and using the known density values to

compute volume. A mean absolute percentage error of 8.74% isreported.

The authors cite the inability of silhouettes to capture information about concavities in the stone as the
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(a) (b) (c)

Figure 2.7: (a) A sphere, (b) a 3-view visual hull of the sphere, and (c) a6-view-visual hull of the sphere. The 3-view visual hull
is computed from three orthogonal views (the UIAIA camera configuration), and its volume is 11.9% larger than the sphere.The
6-view visual hull is computed using the camera configuration of the high throughput, six-camera setup considered in this thesis
(each camera looks onto one of six parallel face pairs of a regular dodecahedron; details are given in Chapter 5), and its volume is
4.5% larger than the sphere. (Visual hull surface regions are coloured to correspond to the camera view for which the surface region
projects to the silhouette outline.)

reason for consistent overestimation of volume by the visual hull. Curiously, the tendency for a visual hull

computed from a finite number of views (three views in the caseof the UIAIA) to be larger than the imaged

object (whether convex or nonconvex) is not mentioned as a possible cause for the consistent overestimates

observed in both the experiments with stones and with spheres.

The UIAIA is also used to estimate the ratioa/c (termed the flat and elongated ratio), wherea is the longest

diameter of the stone andc is the shortest diameter that is perpendicular to the longest diameter. The longest

diameter, and the diameter perpendicular to the longest diameter is computed for all three views. The largest

of these six diameter values is used to estimatea, and the smallest is used to estimatec. Approximately one

thousand aggregate particles were classified into three classes ofa/c: smaller than 3:1, 3:1–5:1, and greater

than 5:1. This was done both manually with a caliper device, and using the UIAIA. The UIAIA is found

to produce more repeatable results than the manual measurements in terms of the proportion of particles in

each class by weight. The class proportions obtained by the UIAIA are found to be in good agreement with

the manually determined classes, but are not quantified.

The UIAIA is also used to emulate sieving. The smallest of thelongest diameters from each 3-view image set

is used to predict the sieve class for each particle. The aggregate particles are sieved into five sieve classes

using square-aperture sieves. Plots of histograms from UIAIA sieve emulations are compared with those

obtained from manual sieving and are found to match closely.

The UIAIA has also been used to approximate local shape properties such as the angularity and texture of

stones.
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2.6 Recognising Individual Particles

The academic literature makes few references to the problemof recognising individual particles. The existing

references either are speculative and do not provide quantitative evaluations of proposed methods, or simply

describe the need for particle recognition rather than proposing solutions to the problem. Note, however,

that object recognition is one of the main goals of computer vision, and a wealth of literature exists on the

subject.

In a theoretical paper [127], Taylor proposes to describe the 3D shape of particles by their principal moments.

He states that it is extremely unlikely for two particles to be congruent, and proposes that the principal

moments can be used to uniquely identify individual particles. Several shapes are demonstrated to have

the same sieve size, yet the shapes are uniquely identifiableby their moments. The author aims to test his

proposed formulation using real particles and tomographicshape reconstruction in the future.

In a later paper [126], Taylor points out that it is not easy to“confirm that one has selected a given particle

from a group” and proposes that moments of two voxel representations are used to determine whether or not

the representations correspond to the same particle. For irregular particles, each voxel representation will

have a unique shape if sufficient voxels are used. Taylor and his coworkers currently identify individual rocks

by imprinting a number on each rock. Note that this approach is impractical for smaller stones (such as the

garnets and gemstones used in this thesis), and requires manual identification, whereas this thesis provides

methods to enable automated identification.

Fernlund [41] mentions identifying particles from silhouettes using the intermediate diameter (as described in

Section 2.5.1). This is done to reconcile pairs of silhouettes of the same particle captured from approximately

orthogonal viewpoints. However, no quantitative assessment of the accuracy of this approach is given.

2.7 Reconstruction Techniques Not Based on Silhouettes

Shape-from-silhouette methods are by no means the only methods that have been considered for determining

the 3D shape characteristics of particles. Shape-from-silhouette methods are typically favoured over com-

peting methods because of their low monetary cost, simplicity, and robustness. Other methods may achieve

greater accuracy; for instance, they may be able to model surface concavities whose shape cannot be captured

by silhouettes from any viewpoint.

A few examples of particle shape reconstruction techniquesthat are not based on silhouettes follow.

Bouguet [13] demonstrates the use of point-basedstereo reconstructionof a rock from a turntable sequence

(see Figure 2.8). Using the texture of the rock’s surface, points are tracked across multiple frames and 3D

coordinates are inferred from the points’ 2D image locations. The method is not amenable to high throughput
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Figure 2.8: Rock shape reconstruction. Images are captured as a rock isrotated on a turntable. The top row of images shows 5
of the 226 images used. The camera trajectory and reconstructed 3D points(bottom, left)and triangular mesh model formed with
Delaunay triangulation(bottom, right)are also shown (pictures from Bouguet [13]).

modelling since the rock must be rotated on a turntable, but the 3D models are potentially highly accurate.

The method relies on the rock’s texture for point tracking and is therefore unsuitable for textureless particles.

Erdogan et al. [38] describe the use of X-ray tomography for acquiring 3D particle shape. The particles must

be embedded in a cement-like matrix, and are rotated in frontof the X-ray scanner for several hours, so that

multiple slices can be collated to form a 3D shape model. Multiple particles are imaged simultaneously, and

individual particles are segmented from the 3D image. It is important that the matrix have significantly dif-

ferent X-ray absorption properties from the particle. The authors manually measured long, intermediate and

short diameters for three rocks using digital calipers. Themaximum discrepancy between the X-ray models

and the manual measurements was 2.6 mm for a longest diameterof 74.5 mm (i.e., an error of approximately

3.5%).

Lanaro and Tolppanen describe an alternative X-ray imagingsetup. A cone beam is used (as opposed to

collating slices.) The authors cite greater accuracy and the ability to model the interior of opaque solids as

the reasons for preferring the cone beam approach to slices.Samples of rock particles, glass beads and quartz

sand are demonstrated to have different shape properties interms of elongation and flatness measured from

3D reconstructions. It is suggested that their method can beused for creating approximate 3D models for

detailed numerical modelling of particulate processes. Since realistic particle simulations typically require a

large number of particles to be considered, it is suggested that simple ellipsoidal models that share volume,

elongation, and flatness properties with the 3D reconstructions be used. This reduces the computational load.

Unlike X-ray tomography methods, laser scanning acquires surface data points one at a time. Lanaro and

Tolppanen [71] describe a laser scanning setup in which the surface of individual stones is scanned with a

laser and viewed by two cameras. Triangulation of the projection of the laser line yields the corresponding 3D

surface coordinates. Since a scan only captures one side of each particle, it must be turned over and rescanned
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to capture the hidden side. To register the two surfaces in a common reference frame, at least three point

correspondences are required. These are determined by gluing three ball bearings to each particle. The centre

points of the balls are identified and used as reference points. Seven railroad ballast particles (32–64 mm)

were reconstructed. The computed volumes differed from theground truth values (measured manually) with

a greatest underestimate of 5.3% and a greatest overestimate of 3.2%.

2.8 Summary

This chapter has illustrated the broad range of interest in particle shape analysis from many different fields,

and the range of solutions that have been devised to estimateparticle shape. This provides the historical

background to the work that is presented in this thesis.

The principal shape features of interest are particle volume, and the long, intermediate, and short diameters.

Many approaches, both silhouette-based and others, have been carried out to estimate these shape features.

Researchers have tried various different approaches to capturing silhouettes from multiple viewpoints (multi-

camera setups, turntables, manual repositioning of particles, perpendicular faced trays).

All the multi-view silhouette-based setups (with the possible exception of the commercial turntable systems

for which explanations of methodology are not available) rely on accurate positioning of the apparatus, rather

than calibration. Calibration is limited to estimating scale so that pixel coordinates may be converted to world

coordinates such as millimetres. This makes the implicit assumption that a weak perspective approximation

is appropriate. This thesis proposes new methods to calibrate multi-view setups so that principled estimates

of particle shape can be made using geometric reasoning, andso that individual particles can be efficiently

and effectively recognised from their silhouettes.

Although silhouette-based particle analysis makes use of concepts that are covered in the computer vision

literature (such as the visual hull), there appears to be little awareness amongst particle analysis researchers

of the shape-from-silhouette research from the field of computer vision.

The problem of individual particle recognition has been mentioned a few times in the particle analysis liter-

ature, but no quantitative studies appear to have been carried out.

Particle shape reconstruction has been attempted with non-silhouette-based approaches. Examples include

X-ray tomography, laser scanning, and stereo reconstruction. Although these systems have the potential to

reconstruct shape more accurately than silhouette-based methods, they tend to be both expensive and slow.

Attention has been paid to computational efficiency for the algorithms presented in this thesis. In practice,

feeding a batch of particles through the six-camera setup (at a rate of ten particles per second) takes more

time than computing the silhouette-based estimates of shape properties, or matching the silhouette sets across

two runs.
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Chapter 3

The Geometry of Silhouette Sets

3.1 Introduction

This chapter overviews the geometry of silhouette sets and introduces important concepts that will be used

in this thesis. First thevisual hull, the simple and widely-used method for approximating 3D shape from

silhouettes, is covered. The explanation of the visual hullallows the related concepts of visual cones, cone

strips, frontier points and viewing edges to be introduced.

Next, two concepts that are central to the methods developedin this thesis are covered: (1) the viewing edge

midpoint hull (VEMH) as a means for efficiently estimating the 3D shape of the convex hull of a stone from

its silhouettes, and (2) outer epipolar tangency error (ET error) as a measure of silhouette inconsistency.

The VEMH plays a central role in this thesis. However it is less important than ET error since an obvi-

ous alternative for efficiently approximating 3D shape fromsilhouettes exists: the visual hull. Efficiently

approximating 3D shape from silhouettes will play a role in the following chapters:

1. In Chapter 6, moments computed from approximate 3D shapeswill be used to form an initial pose

estimate between silhouette set pairs of the same stone. Thepose estimate is subsequently refined using

ET error. Thea, b, andc diameters which are widely used by particle shape analysts (as discussed in

Chapter 2) will then be measured from approximated 3D shapes.

2. Chapter 8 describes a computationally efficient method for computing approximate dissimilarity be-

tween silhouette sets. The method is based on an estimate of the 3D shape of a stone computed from

its silhouettes.

3. Chapter 10, the VEMH will be used to emulate sieve sizing.

25



In this chapter, the VEMH is introduced by first demonstrating how viewing edges impose bounds on the

caliper diameter of the corresponding stone. This allows anupper and lower bound to be computed for

the longest and shortest diameter (given a noise-free silhouette set). Next, the VEMH is presented as an

alternative to the visual hull for estimating 3D stone shapefrom silhouettes.

In later chapters, the ET error will form the basis for developing the following methods:

1. In Chapter 4, the ET error is used to calibrate a mirror-based setup from silhouettes.

2. In Chapter 5, the ET error is used to calibrate a high throughput six-camera setup from silhouettes.

3. Chapter 6 demonstrates how the ET error can be used to inferthe relative pose between two silhouette

sets of the same object.

4. Chapter 7 shows how the pose estimation method of Chapter 6can be used to distinguish two silhouette

sets of the same object (a match) from two silhouette sets of two different objects (a mismatch).

The ET error is introduced by first briefly covering silhouette consistency in general. The ET error, which

is based on the epipolar tangency constraint (a necessary, but insufficient condition for consistency) is then

described.

The methods described in this chapter have been chosen for their simplicity, which leads to efficient compu-

tation. Efficient computation is important for online computations of the high-throughput six-camera setup

that captures image sets at a rate of ten stones per second. Efficiency is also crucial for solving the batch

matching problem for realistic sized stone batches (hundreds to thousands of stones per batch) without mak-

ing use of unreasonably long running times (computing the matching should not take longer than it takes to

feed the stones through the camera setup).

3.2 Visual Hulls

3.2.1 The Visual Hull Concept

The termvisual hull was coined by Laurentini [73] in the 1990s, but the use of the largest silhouette-

consistent object as a means for 3D modelling dates back to the work of Baumgart in the 1970s [7]. Lauren-

tini’s initial use of the term visual hull described the largest object consistent with all possible silhouettes,

but the term is now usually used to refer to the largest objectthat is consistent with a finite set of available

silhouettes [76, 91]. In this thesis, the visual hull is the largest object that is consistent with a given set of

silhouette views. Theline hull is the complement of space covered by all lines that do not pass through the

object. Line hull is a term from the field of computational geometry that is equivalent to Laurentini’s visual

hull computed from all viewpoints outside an object’s convex hull [90].
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(a) (b)

(c) (d)

Figure 3.1: The visual hull concept: (a) a duck viewed by two cameras, (b) two silhouette views of the duck, (c) the two visual
cones associated with the two silhouette views, (d) the visual hull formed from the two silhouette views.

The visual hull concept is illustrated in Figure 3.1. Figure3.1b shows two silhouette views of a duck (the

object being imaged). Camera centres are represented by small spheres. For convenience, the image planes

are placedin front of the camera centres, and the projected silhouette views are shown non-inverted; for

the purposes of this thesis, such a setup is geometrically equivalent to placing the image planes behind the

camera centres.Visual conescorresponding to each silhouette are shown in Figure 3.1c. Avisual cone is the

volume of space that the object cannot lie outside of, given the observed silhouette. The intersection of the

visual cones is the visual hull (shown in Figure 3.1d). The visual hull cannot be smaller than the object. With

two silhouettes, the visual hull is often a poor approximation to the object. However, if further silhouette

views are added, more information about which volumes of space are empty is added, and the visual hull

becomes a better approximation to the object. Figure 3.2 shows visual hulls of the duck formed from three

and from ten cameras. With the additional camera views, morevisual cones carve away 3D regions that do

not form part of the object, leaving a closer approximation to the object. Concave surface regions, however,

cannot be reconstructed by the visual hull, since such regions (the interior of a coffee mug, for instance) do

not affect silhouette shape. In a sense, it is the line hull ofthe object that is approximated by the visual hull.

Fortunately, most particles are well-approximated by their line hulls. In addition, many properties of interest

(such as caliper diameters) have the same value when measured from the object, its line hull, or its convex

hull.
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(a) (b)

(c) (d)

Figure 3.2: More accurate shape from additional views: (a) visual cones from three silhouette views, (b) visual cones from ten
silhouette views, (c) the visual hull from the three silhouette views, (d) the visual hull from the ten silhouette views.

The surface of the visual hull is made up of surface regions from the visual cones. The part of the visual hull

surface associated with each visual cone is acone strip. Since this thesis only considers single objects of

genus zero (i.e., objects without holes), each cone strip forms a single ring around the visual hull. At certain

points, the rings are of zero width. These points are calledfrontier pointsand are important for the methods

developed in this work. Frontier points are discussed in more detail in Section 3.5. Note that in practice,

camera parameters and silhouettes will not be known exactly(i.e., there will be some degree of noise). This

means that some cone strips will be discontinuous if computed directly from visual cone intersections.

Visual hull approximations have been popular as a relatively simple and robust technique for 3D modelling,

since silhouettes can be easily extracted under controlledlighting conditions. For instance, if diffuse back-

lights are used so that the background appears much lighter than the foreground, then the silhouette can be

extracted using a simple threshold on the pixel intensity values.
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3.2.2 Computing the Visual Hull

In order to determine the visual hull corresponding to a set of silhouettes, the cameras that produced the

images must be calibrated. This means that the internal camera parameters (such as focal length, principal

point) and the pose must be (at least approximately) known. In this thesis, the termsilhouette setis used to

refer to a calibrated set of silhouettes (i.e., the view poses are known in a common reference frame, and the

camera internals are known). Furthermore, the silhouetteswill be approximated bypolygons. As pointed

out by Lazebnik [75], the use of polygons rather than higher order spline curves allows simpler and more

efficient methods to be developed.

Voxel-Based Approaches

A simple means of approximating the visual hull from a silhouette set is to consider the voxels that tessellate

the common field of view. The size of the voxels will determinethe resolution of the computed visual hull.

Only voxels that project into the silhouette foreground in aall views are classified as part of the visual hull.

Other voxels are classified as empty.

The efficiency of the voxel-based method can be improved by using an octree decomposition as described

by Szeliski [123]. Initially, a coarse voxel grid is considered. Any voxel that projects entirely into the

background inany view is classified as empty. Any voxel that projects entirelyinto the foreground inall

views is classified as visual hull. The remaining voxels are each subdivided into eight smaller voxels that are

then classified as empty, visual hull, or subdivide. Subdivision ceases once a sufficiently high resolution has

been achieved.

Once a voxel representation has been computed, a technique such as marching cubes [84] can be used to

create a polygonal surface. This approach considers all voxels through which the surface passes. (If octree

subdivision is used, these are the smallest voxels.) A surface patch is created for each of these voxels. The

shape of the patch is determined by which of the voxel vertices lie inside the visual hull.

Surface-Based Approaches

A second group of approaches proceed by considering the surface rather than the volume of the visual hull.

This includes some of the original approaches [7] in which constructive solid geometric techniques were

used to directly intersect the visual cones.

Since intersecting general polyhedra is slow, methods havebeen developed to take into account the specific

geometry of the visual cones, so that they may be efficiently intersected. Matusik et al. [91] make use of

an edge-bin data structure to store edges associated with angular ranges of lines through the epipole. The

method achieves efficiency by computing intersections in 2D: polygonal intersections are first formed in the
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image plane, and then these intersections are intersected with one another on planes defined by facets of the

viewing cones.

Franco and Boyer [48] describe another efficient method for computing polygonal surface models of silhou-

ettes. The first step is to compute theviewing edgesfrom a silhouette set. Aviewing lineis a line that passes

through a silhouette vertex and its camera centre. Intersecting a viewing line with the visual cones from all

other cameras leaves a viewing edge. The vertices of the viewing edge endpoints are vertices of the visual

hull polyhedron. Franco and Boyer show how the connectivityof these vertices and the remaining surface

points can be determined by using local orientation and connectivity rules to walk along the viewing cone

intersection boundaries.

Several alternative approaches for computing the visual hull are described in the computer vision litera-

ture [17,76,85,125].

It is interesting to note that the convex hull of the visual hull can be computed relatively simply by forming

an intersection of all halfspaces defined by the edges of the silhouette polygons. The plane specifying a

halfspace is formed by the edge and its camera centre. Many efficient halfspace intersection algorithms

exist. For instance, the Quickhull algorithm [5] is ofO(nlogn) time complexity forn halfspaces. If the

planes are treated as points in dual space, then the duals of the facets of their 3D convex hull specify the

visual hull vertices in primal space.

3.3 Constraints Imposed by Viewing Edges

This section demonstrates that silhouette sets impose bothan upper and lower bound on the caliper diameter

in a given direction. These bounds are derived by considering viewing edges.

By considering the upper and lower bounds over all directions, it is possible to compute upper and lower

bounds for the longest and shortest diameter of a stone from its silhouette set. Although estimating the

longest and shortest diameter of a particle from its silhouette set is of interest to particle shape analysts (as

discussed in Chapter 2), it does not appear to have been pointed out that a silhouette set imposes bounds on

these properties.

3.3.1 Bounds on Caliper Diameters in a Given Direction

Since the caliper diameter of a stone in a given direction is the same as that of its convex hull, for simplic-

ity the convex hull of the stone will be considered. The convex hulls of the observed silhouettes are the

projections of the convex hull of the stone.
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Let the caliper diameter of a stone in directionr be dr . The valuedr is the distance between two parallel

support planes that are tangent to and enclose the object (Figure 3.3a). The tangent plane normals are parallel

to r .

The 3D shape of the object is unknown; all that is available isa silhouette set. The upper bounddUr for the

caliper diameter is the largestdr value that can be computed from an object that could have produced the

observed silhouettes. The visual hull provides the upper bound for dr . No greater value is possible, since

if either support plane were moved away from the object, no object would be able to be both tangent to the

support planes and able to produce the observed silhouettes.

The method for computing a caliper interval for a given direction is illustrated in Figure 3.3. The figure shows

the support planes of the actual caliper diameter for a givendirection (Figure 3.3a) and three silhouette views

that are used to construct a visual hull (Figure 3.3b). The visual hull is the largest object that is consistent

with the silhouettes. It can be used to compute the largest caliper diameter along the given direction that is

consistent with the silhouettes (Figure 3.3c).

Identifying the lower bounddLr (Figure 3.3d) ondr from the silhouette set is less obvious. The support

planes ofdLr must be as close as possible without destroying any cone strips that generate the observed

silhouettes.

Finding the smallest consistent caliper diameter along a given direction is illustrated in more detail in Fig-

ure 3.4. Figure 3.4a shows the visual hull model that is made up of cone strips corresponding to the three

silhouettes. In the noise-free case, the cone strips project exactly onto the corresponding silhouette outlines.

Each cone strip represents the only regions in 3D space that may generate the corresponding silhouette out-

line and remain consistent with all silhouettes. Aviewing edgeis the portion of a ray through the silhouette

outline that coincides with the corresponding cone strip. Some part of each viewing edge must be tangent

to the object, so that the point on the silhouette outline is generated. No viewing edge can therefore lie out-

side the support planes that contain the object. This provides a means for calculating the smallest consistent

caliper diameter: the support planes must be as close together as possible, without any viewing edge lying

entirely outside the region between the support planes. In Figure 3.4, the upper support plane is limited by

the viewing edges that form the green cone strip (Figure 3.4c): if the support plane were moved any closer,

viewing edges from the green cone strip would lie entirely outside the region between the support planes.

Note that the portion of the visual hull that lies between thesupport planes generates the observed silhouettes,

and is therefore an example of a silhouette-consistent object with a diameterdLr in directionr .

3.3.2 Bounds on the Longest and Shortest Diameters

Since silhouette sets impose bounds on the diameter in a given direction, it is interesting to note that a sil-

houette set imposes bounds on the longest and shortest diameters (quantities of interest to particle shape
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(a) (b)

(c) (d)

Figure 3.3: Caliper intervals: (a) the caliper diameter of a stone for agiven direction, (b) the available information: three silhouettes
from which a visual hull consisting of cone strips from each silhouette can be constructed, (c) the maximum caliper diameter along
the given direction that is consistent with the silhouette set, (d) the minimum caliper diameter along the given direction that is
consistent with the silhouette set.

(a) (b) (c) (d)

Figure 3.4: Diagram showing (a) the visual hull, and (b–d) the three constituent cone strip components along with the support planes
for the minimum consistent caliper diameter. The example uses the same stone, silhouettes, and caliper direction as Figure 3.3.
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analysts). The bounds are, however, geometrical bounds andare only valid for noise-free silhouettes. Never-

theless, the bounds provide insight into the inherent (i.e., geometrical) limits of the extent to which longest

and shortest diameters can be computed from silhouette sets.

The upper bound for both the longest diameter and the shortest diameter are simply computed by finding the

longest diameter and the shortest diameter of the visual hull, because no larger shape is consistent with the

silhouettes. Computational geometers have discovered exact solutions for determining the longest diameter

(termed simply thediameter) and the shortest diameter (thewidth) of arbitrary polyhedra [24, 57]. These

methods can be applied directly to a polyhedral representation of the visual hull to obtain upper bound

values.

Lower bounds for the longest and shortest diameter are approximated by considering an approximately uni-

form dense sampling of directions obtained using subdivisions of an icosahedron [61]. The best solution

from dense sampling is then refined using a conjugate gradient optimiser which makes use of an analytical

expression for the partial derivatives of the lower bound diameters with respect to an azimuth-elevation angle

parameterisation of direction.

An experiment was carried out using synthetic data in which the longest and shortest diameter of a polyhedral

stone model is compared with the bounds computed from its silhouette set. Synthetic silhouettes were

generated using 3-, 4-, 6- and 10-camera setups. To provide viewpoints that are well distributed about the

viewing hemisphere, setups withn cameras are positioned to look onto the parallel face pairs of a 2n-faced

Platonic solid (such setups are described in more detail in Chapter 5). The refined visual hull models of a data

set of uncut gemstones, illustrated in Appendix C (pages 222–224), were used as polyhedral stone models.

The stones were randomly oriented. For each polyhedral stone model, the longest and shortest diameter was

computed. The upper and lower bounds were then computed fromsilhouette sets of the stone. These bounds

are expressed as a percentage of the actual value. Ideally, lower bounds should be less than 100% of the

true value, and upper bounds should be greater than 100% of the true value, but since the bounds are only

approximated, there are a small number of cases in which thisis not true.

Figure 3.5 shows plots of the distributions of bounds for thefour different camera setups considered. To aid

comparison, the upper half of each sub-plot shows distributions for the bounds on the smallest diameter, and

the lower half of each sub-plot shows distributions for the bounds on the longest diameter. As the number

of cameras is increased, the bounds move closer to 100%. Thisis because the additional views place tighter

constraints on the range of possible values. Notice that thebounds on the longest diameter are closer to

100% than those on the shortest diameter, indicating that there is less uncertainty on its value. Interestingly,

the plots indicate that the longest diameter is better approximated by its lower bound, whereas the shortest

diameter is better approximated by its upper bound.
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Figure 3.5: Distributions of bounding values computed from silhouette sets as specified as a percentage of the actual values.
Silhouette sets were computed from the 1423 polyhedral stone models illustrated on pages 222–224.

3.4 Viewing Edge Midpoint Hulls for Approximating Shape

The viewing edge midpoint hull (VEMH) is proposed as an alternative to the visual hull for approximating

the 3D convex hull of a stone from the 2D convex hulls of its silhouettes. The VEMH is the convex hull of

the midpoints of all viewing edges. The silhouette projections of the VEMH are the same as the convex hulls

of the observed silhouettes in the noise-free case, so the VEMH is a silhouette-consistent object.
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3.4.1 Advantages of the VEMH

Use of the Convex Hull

The approach taken in this thesis is to attempt to reconstruct the 3D shape of the convex hull of a stone

from its silhouettes rather than the possibly nonconvex shape of the stone. Using convex hulls simplifies

computations and allows for 3D shape to be approximated moreefficiently than if nonconvex shapes are

considered. This approach is useful in two contexts:

1. Since the caliper diameter of a stone in a given direction is the same as that of its convex hull, the

VEMH can be used to estimate caliper diameters. This will be done for both estimating the short,

intermediate, and long diameters of a stone and for estimating a caliper diameter distribution to aid

recognition.

2. Since the principal axes of the convex hull of a stone can beused to specify its pose with respect to

some reference frame, the VEMH is used to approximate the pose of a stone from its silhouette set.

This provides an initial pose estimate that will be used to align silhouette sets of the same stone in a

common reference frame.

Comparison with the Visual Hull

The aim of the VEMH is to provide a more accurate estimate of the 3D shape of stones from silhouettes than

the visual hull.

Visual hulls often have sharp edges where cone strips meet. Although geometrically the visual hull could

be the object that generated the silhouettes, more often thesharp edges are artefacts that do not exist on the

actual object. Unless by chance a stone’s surface is tangentto the cone strip near the regions where cone

strips meet, the volume of the visual hull near the cone stripintersections and far from the frontier points is

not shared by the stone.

In general, an object will be tangent to the viewing edge at one point along the viewing edge. Using the

visual hull to approximate stone shape considers the stone to be tangent to the entire viewing edge (this is

an extremely unlikely coincidental alignment of the stone). Since stones are not in general smooth, no use

of the silhouette curvature is used for interpolation, and the midpoint of the viewing edge is simply used as

the point of tangency for the shape approximation. The convex hull of the midpoints is used as the shape

approximation. Although additional volume could be incorporated into the shape approximation, this is not

done for two reasons:
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1. Since the VEMH is silhouette-consistent, the silhouettes do not provide any evidence of the presence

or absence of additional volume. One would have to make use ofa priori knowledge of shape. Since

stones are irregular in shape there is no obviousa priori knowledge to incorporate.

2. To a certain extent, many stone surfaces consist of low-curvature regions (flattish faces) that are joined

by high curvature regions (edges). Since the stones are arbitrarily oriented with respect to the cameras,

high curvature regions are most likely to form contour generators, with the flatter regions in between.

This parallels with the VEMH in which rims are joined by flat faces, and is unlike the visual hull in

which the volume extends to the limit of silhouette consistency.

Figure 3.6 illustrates the differences between visual hulls and VEMHs. Note that the much of the visual

hull volume in the regions where cone strips meet, and which is absent in the VEMHs, is also absent in the

original stones.

3.4.2 Alternative 3D Shape Estimates from Silhouette Sets

Several other approaches are described in the literature for estimating the 3D shape of an object from its

silhouettes. The main advantage of the VEMH over these methods is it computational efficiency (how this is

achieved is described in Section 3.4.3) and its simplicity.

Visual Shapes

Franco et al. [49] introduce a family of silhouette-consistent 3D objects that they termvisual shapes. Their

approach is similar to the VEMH in that a portion of the viewing edges is included to ensure silhouette con-

sistency. Three approaches for selecting portions are suggested: (1) thinning the viewing edges, (2) selecting

a single random contact point, and (3) choosing the contact point corresponding to a local order 2 surface.

Of the three approaches, the VEMH is most similar to the second. However, the VEMH approach makes

use of the midpoint instead of a random contact point. Compared with the random approach, the midpoint

approach reduces by a factor of two the maximum possible distance between the actual contact point and

the assumed contact point. (Despite the similarity betweenthe VEMH and visual shapes, the VEMH was

developed independently and prior to the publication of thevisual shapes.) To determine a polyhedron from

the visual shape points, Franco et al. compute the Delaunay tetrahedrisation of the points, and then carve

tetrahedra that project outside any silhouette.

Dual-Space Approaches

Another approach to approximating 3D shape from silhouettes is to represent tangent planes to the object

(that are defined by the silhouette outlines) as points in dual space, and then to estimate the dual surface of
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Figure 3.6: Visual hulls and VEMHs generated from three orthogonal silhouette views of stones. The first row (a–c) shows three
stones. The second row (d–f) shows the 3-view visual hulls computed from 3-view silhouette sets of the above stones. The visual
hull surfaces are coloured according to the cone strips thatthey are made up from. Viewing edge midpoints are shown as small
spheres. The third row (g–i) shows the rims of the VEMHs. These are the loci of the viewing edge midpoints; it is the rims that
generate the silhouette outlines (i.e., the silhouette outlines are projections of the rims). The fourth row (j–l) shows the VEMHs: the
convex hulls of the viewing edge midpoints.
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the object [17, 68, 80]. However, as pointed out by Franco et al. [49], these approaches do not enforce the

constraint that other silhouettes limit the position of tangency on the viewing line (i.e., the tangency must

occur on a viewing edge, rather than anywhere along a viewingline); these approaches are therefore unsuit-

able for sparse silhouette sets in which the viewpoints are well-distributed (as is the case for the silhouette

sets considered in this thesis.) In addition, the dual-space approaches assume that surfaces can be locally

modelled with a quadric; this approach is unlikely to work well with stones, since they are not in general

smooth.

Nevertheless, it is noted that a dual-space approach may yield a good solution to the problem of estimating the

convex hullof a stone from its silhouette set. The tangent envelope corresponding to the convex polygonal

representation of each silhouette boundary is a planar convex polygon in dual space [110]. (The tangent

planes at the crossing points of these planar convex polygons correspond to frontier points in primal space.)

The convex hull of these polygons corresponds to the visual hull in primal space. (This arises from the duality

between halfspace intersections in primal space and convexhull in dual space.) This approach provides two

useful properties:

1. Points may be added in dual space (to the original points that are the vertices of the planar convex

polygons). The convex hull of all points corresponds to a polyhedron in primal space that is a carved

version of the original visual hull. Ensuring that all points lie on the surface of the convex hull in dual

space ensures that the corresponding primal space polyhedron is silhouette-consistent (i.e., it generates

the observed silhouettes). Convexity preserving interpolation of the planar convex polygon vertices

may therefore provide a smooth silhouette-consistent shape.

2. Since the convex polygons corresponding to each silhouette are planar, methods for interpolating cross

sections [9] may provide a means for computing a smooth silhouette-consistent shape.

Radial Basis Functions

As with the VEMH, Collings et al. [29, 30] impose the restriction of approximating the 3D shape of convex

objects from convex silhouettes. They approximate a convexsolid from its silhouettes by fitting implicit

radial basis functions. This is achieved by computing the positions of frontier points, which are assumed

to lie on the surface, and by incorporating local curvature at frontier points. The method relies on the solid

being sufficiently smooth that local curvature can be used tointerpolate the surface regions between frontier

points, and is therefore not applicable to stones, for whichthis assumption is not generally valid. Unlike the

VEMH approximation, the method does not enforce the constraint that the object is tangent to the viewing

edge interval on each viewing line. The reconstructed shapeis therefore not constrained to be silhouette-

consistent as it is not constrained to lie within the visual hull.
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Triangular Spline Models

Sullivan and Ponce [121] describe a method in which triangular spline models are used to approximate the

3D shape of an object from its silhouettes. The spline model is deformed using an iterative minimisation of

the average distance between the surface and viewing lines defined by the observed silhouette set.

The Constant Depth Rim Hull

Possibly the simplest and most efficient estimate of 3D shapefrom multiple silhouettes is the constant depth

rim hull (CDRH). Marr [88] speculates that the human visual system may infer 3D shape from silhouettes

by assuming that the rim (contour generator) is planar (i.e., constant depth). (This is however disputed in

a later article by Koenderink [69]). Regardless of whether or not the human visual system may infer shape

by assuming planar rims, the assumption of planar rims provides a simple and computationally efficient

means for approximating the 3D shape of stones from multiplesilhouette views. First the object depth is

approximated by triangulating the centres of each silhouette to provide an approximate centre point. The

polygonal silhouette boundaries are then backprojected tothe depth of the centre point to form planar rims

at that depth. The convex hull of the planar rims is the CDRH. Note that although the CDRH is used to

approximate 3D shape, it is not necessarily silhouette-consistent: although the planar rims ensure that the

CDRH projections are sufficiently large to cover the silhouettes, the projections may be larger than the

silhouettes.

Assuming constant depth rims for approximating 3D shape does not appear to have been used for stones, but

has been used for other objects such as fruit [67].

The CDRH is introduced in this thesis mainly to justify the additional complexity used in computing the

VEMH. The CDRH and the VEMH are similar in that both compute a rim for each silhouette in the silhouette

set. (The rim projection is the corresponding silhouette outline.) The CDRH and the VEMH differ in

that CDRH rims are of constant depth, whereas VEMH rims may vary in depth. To justify the additional

complexity of the VEMH it will be demonstrated that it provides more accurate estimates of 3D shape (for

the tasks relevant to this thesis) than the CDRH.

Figure 3.7 shows an example that shows the VEMH and CDRH computed from three orthogonal silhouette

sets of convex stones.

3.4.3 Computing the VEMH

The VEMH is computed by considering, in turn, the viewing line passing through each vertex of the polygons

representing each of the silhouettes in the set. Each remaining silhouette in the set (i.e., the silhouettes other

than that of the viewing line under consideration) is used toidentify segments of the line that the object may

39



Figure 3.7: Estimating convex shape with rims using the VEMH and the CDRH. The first column shows the rims generated by
a 3-view silhouette formed from three orthogonal cameras. Rims are shown with(above)and without(below) the imaged stone.
The second column shows rims calculated using the viewing edge midpoints that are computed using the 3-view silhouette set. The
convex hull of the midpoints (the VEMH) is also shown. The third column shows rims that are calculated by backprojecting the
silhouette boundaries to a constant depth that is determined by triangulating the three silhouette centroids. The triangulated point
that defines the constant depth is shown in purple. The convexhull of the constant depth rims (the CDRH) is also shown. Notethat
some portions of the constant depth rims lie within the CDRH indicating that it is not silhouette-consistent.

lie within. The intersection of all of the segments is the viewing edge. The convex hull of all viewing edge

midpoints is the VEMH. For computing caliper diameters of the VEMH, it is not necessary to explicitly

compute the convex hull of the midpoints, as the caliper diameter of the 3D point set (consisting of all

viewing edge midpoints) can be used instead of a polyhedral representation of the VEMH.

Viewing Line Projections

To identify the segment of the viewing line that a silhouettedoes not imply as being empty, the viewing line

is projected onto the silhouette. This is illustrated in Figure 3.8 in which the viewing line corresponding to

vertexm is under consideration.

The viewing line passes through the pointsC1 (the camera centre of Camera 1),P1, M, andP2 in the figure.

Its projection is easily computed by projectingC1 andm on to Camera 2’s image plane. The viewing line

projection is illustrated by the line passing throughe21 (an epipole: Camera 1’s projection onto Camera 2’s
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Figure 3.8: Computing a viewing edge from two convex silhouette views.Lines are represented as thin cylinders and points are
represented as small spheres to aid 3D visualisation. The point M is the viewing edge midpoint.

image plane),p1 andp2. The pointsp1 andp2 are the points of intersection of Polygon 2 with the viewing

line projection. Since the polygons are convex, there can beat most two such intersection points. Because

of noise, there may be no intersection points in some cases.

Precomputed Edge-Bin Data Structures

An edge-bin data structure is precomputed for each silhouette-epipole pair. The edge-bin data structure

allows the intersections of a viewing line projection through the epipole and the silhouette to be rapidly

computed.

The edge-bin data structure is computed in a similar means tothe one described by Matusik et al. [91].

However, since only convex silhouettes are used, it can be populated using a simpler algorithm.
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First, bin boundaries are determined by sorting the polygonvertices according to the angle made with the

epipole and an arbitrary fixed reference line. The implementation uses a line through the first vertex and the

epipole as a reference line. An example is given in Figure 3.9: the six vertices of the polygon give rise to

five bins.

e1
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e4

e5

e6

b1

b2

b3

b4

b5

θ1

θ2

θ3

θ4
θ5

θ6

silhouette

epipole

Figure 3.9: An example of a silhouette and epipole with edges and bins shown. The bin contents are listed in Table 3.1.

Each bin must store the edges that a line through the epipole whose angle falls into the bin’s angular range

will intersect. Since the polygon is convex, each bin will contain exactly two edges. This makes populating

the bins easy.

The bins are traversed in order, and the polygon is traversedsimultaneously, starting from the vertex with

the smallest angle (θ1 in the example). The current edge is added to the current bin if it falls within the bin’s

range, otherwise the current edge is updated by moving to thenext edge (i.e., moving to the edge that shares

a vertex with the current edge). Once the vertex with the largest angle is reached, each bin will contain one

edge. The process is then reversed (the bins are traversed inreverse order) to add the second edge to each

bin.

Table 3.1 shows the edges contained by each bin in the example.
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Bin Range Edges

b1 θ1 – θ2 e1, e2

b2 θ2 – θ3 e1, e3

b3 θ3 – θ4 e6, e3

b4 θ4 – θ5 e6, e4

b5 θ5 – θ6 e6, e5

Table 3.1: An example edge-bin data structure formed from the silhouette and epipole shown in Figure 3.9.

Intersections between the Viewing Line Projection and the Silhouette

Once the edge-bin data structure has been built, intersections can be computed efficiently. The angle of the

viewing line projection is computed with respect to the reference line. This is used to determine the bin

that contains the edges that intersect the viewing line projection. If the angle lies outside the range of all of

the bins, then there is no intersection. Note that since the viewing line projections correspond to a polygon

that is being traversed in another view, the appropriate binis usually close to the most recently visited bin.

This means that forB bins, lookup is of constant time complexity, rather than anO(logB) search, when the

viewing line projections are processed in order.

It is possible that the following approach (not implemented) may further improve the simplicity and effi-

ciency of the algorithm. Instead of forming edge-bin data structures, the intersection edges are determined

by starting with the most recently intersected edge. Since the projected viewing lines are computed in order,

the relevant edge will be found close to the most recently intersected edge, and the entire polygon need not

be traversed. In other words, the silhouette polygon and thepolygon that generates the viewing lines are

traversed simultaneously.

Projecting Segments onto the Viewing Line

Once the intersection pointsp1 andp2 are known, they must be projected onto the viewing line toP1 andP2.

To easily compute the intersection of line segments specified by different silhouettes, the points are specified

asP1 = C1 +d1V̂, whereV̂ = (C1−m)/‖(C1−m)‖ so thatd1 is the distance along the viewing line fromC1

to P1.

The viewing edge is then computed as the intersection of all intervals as indicated by all silhouettes other

than the silhouette corresponding to the viewing line. Because of noise, some interval intersections may

be empty; in these cases the viewing line does not contributea midpoint to the VEMH. (Figure 3.8 shows

point M as the midpoint of the viewing edge specified by the two silhouettes for the viewing line under

consideration.)
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3.5 Measuring Silhouette Consistency

A consistent silhouette set is one that could have been produced as the silhouette projections of a 3D object.

Geometrically, a silhouette set of an object is consistent if the intersection of the visual cones corresponding

to each silhouette projects exactly onto the silhouettes. This is the cone intersection projection (CIP) con-

straint. It is asufficientcondition for consistency, since the cone intersection is an example of a 3D object

that produces the silhouette set. It is also anecessarycondition, since any portion of a silhouette that is not

covered by the cone intersection projection provides contradictory information: the uncovered portion of the

silhouette indicates that the corresponding viewing rays are occluded by an object, whereas the remaining

silhouettes in the set indicate that the 3D region corresponding to these viewing rays is entirely empty.

Real silhouette sets are noisy: there will always be error associated with the camera parameters and the

segmented silhouette boundaries. Real silhouette sets will therefore not, in general, be perfectly consistent.

It is therefore useful to formulate a measure of thedegreeof inconsistency of a silhouette set.

The concept of a degree of inconsistency for a silhouette setis an important concept for this thesis:

1. By adjusting camera parameters to minimise the degree of inconsistency, cameras can beself-calibrated.

2. The degree of inconsistency can be used as adiagnosticto ensure that cameras have not been moved

or adjusted since calibration. (Although this thesis does not analyse this diagnostic, it formed a useful

tool during the data acquisition phase of the thesis project.)

3. It will also serve as a means for inferring whether two silhouette sets were produced by the same

stone (a match): if a relative pose can be found to align the two silhouette sets so that the degree of

inconsistency is sufficiently low, then the two silhouette sets are classified as a match.

This thesis makes use of a degree of inconsistency based on outer epipolar tangents and the epipolar tan-

gency constraint. The use of epipolar tangencies for silhouette-based pose optimisation was first considered

by Grattarola [54]. The method provides a computationally efficient means of obtaining pairs of point corre-

spondences whose reprojection error provides a measure of inconsistency [138].

Other measures of silhouette consistency such as thesilhouette coherenceof Hernández et al. [39, 60] and

the silhouette calibration ratioof Boyer [14, 15] use more information contained in the silhouettes, but

are computationally inefficient. These measures are therefore not of primary importance for the methods

developed in this thesis. However, they will be considered in the context of matching in Chapter 7.

3.5.1 The Epipolar Tangency Constraint

The epipolar tangency constraint is a geometrical constraint that applies to pairs of silhouette views (with as-

sociated pose and internal parameters): a line that is tangent to one silhouette and passes through the epipole
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must project onto a silhouette tangent in the opposite image. With reference to an example (Figure 3.10),

this section describes how the epipolar tangency constraint can be expressed in terms of the silhouettes and

the camera pose and internal parameters.

camera 1
camera 2baselineC1

C2

π0

π1

e12 e21
p120

p121

p210

p211

P0
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π0
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p210 p211
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P1

(b)

Figure 3.10: Two views of the epipolar geometry of a scene: (a) a front view, and (b) a side view looking onto the scene in a
direction parallel to the baseline.

Figure 3.10 shows the same scene as shown in Figure 3.1, alongwith some additional points and planes. The

line joining the two camera centresC1 andC2 is called thebaseline. It pierces the image plane of Camera 1

ate12 and the image plane of Camera 2 ate21. The pointse12 ande21 are epipoles. In the figure, the epipoles

are represented as small circles (projections of spheres) on the image planes.

The two planesπ0 andπ1 that pass through the baseline and are tangent to the duck areshown. Provided that

the baseline does not pass through the object, there will be two such planes for any object. The pointsP0

andP1, where the planes touch the object’s surface, are frontier points. Since the planes pass through both

camera centres and graze the surface of the object, the frontier points project onto the silhouette boundary

in both views. The projection of a frontier point is the tangency point of a silhouette tangent that passes

through the epipole. A projection of a frontier point is therefore termed anepipolar tangency. The epipolar

tangenciesp120 andp210 are projections ofP0, andp121 andp211 are projections ofP1. (The notationpi jk

is used so thati indicates the number of the camera whose image plane the point lies on, j indicates the

number of the other camera of the silhouette pair, andk indicates to which of the two frontier pointspi jk

corresponds.)

The intrinsic geometry between the viewsi and j is encapsulated by the 3×3 fundamental matrixF ji [58]. If

xi represents the homogeneous coordinates of an image point from view i, andx j represents the correspond-

ing point in view j, thenxi is constrained to lie on the lineF ji x j in view i so that

xT

i F ji x j = 0. (3.1)

If the relative pose between viewi and view j is described by a rotation represented by the matrixR followed

by a translation represented by the vectort that transform points from the reference frame of cameraj to the
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reference frame of camerai, then anessential matrixcan be computed using

E ji = [t]×R. (3.2)

The antisymmetric matrix[t]× is computed from the translation vectort = [tx, ty, tz]T using

[t]× =







0 −tz ty
tz 0 −tx

−ty tx 0






. (3.3)

The essential matrix can therefore easily be computed for a given known pose. The fundamental matrix can

be computed from the essential matrix:

F ji = K
−T

i E jiK
−1
j (3.4)

where theK matrices store the internal parameters for camerasi and j so that

K =







f 0 u0

0 f v0

0 0 1






, (3.5)

for focal length f and principal point(u0,v0). This camera model assumes that pixels are square.

Figure 3.11 shows the epipolar tangents for each silhouetteimage of the duck example. Each line lies in

e12
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F12p121
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Figure 3.11: The epipolar tangency constraint: the epipolar tangent touches the silhouette at the projection of the frontier point, as
shown in (a) and (b); the projection of this tangent onto the image plane of the opposite camera is constrained to coincidewith the
opposite epipolar tangent.

a tangent plane containing a frontier point, and therefore must project onto the corresponding line in the

opposite image: this is the epipolar tangency constraint. In other words, in the noise-free case, the line

passing throughei j andpi jk is the same line asF ji p jik .
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3.5.2 A Measure of Inconsistency Based on Epipolar Tangents

If there are inaccuracies in the silhouettes or the pose, then the line passing throughei j andpi jk will not, in

general, be the same line asF ji p jik . Figure 3.12 shows the noisy case in which there are inaccuracies in the

assumed relative pose between the cameras. Note that the epipoles are positioned differently to Figure 3.11,

d120

d121

e12

p120

p121

F21p211

F21p210

(a)

d210

d211

e21

p210

p211

F12p121

F12p120

(b)

Figure 3.12: Epipolar tangents with the projection of the epipolar tangents of the opposite view and incorrect pose information:
since the pose information is incorrect, the epipolar tangents do not project onto one another. The silhouettes are inconsistent with
one another for the given viewpoints. The reprojection error is a measure of the degree of inconsistency.

since the pose is incorrect. The projection of the opposite camera’s epipolar tangent is not exactly coincident

with the epipolar tangent on the image plane. Reprojection errors can be computed as a measure of the

inconsistency between a pair of silhouettes with an associated pose value. The reprojection error is the

shortest distance from an epipolar tangency to the epipolarline of the corresponding point in the opposite

image. The figure shows the reprojection errorsd120, d121, d210 andd211.

The distancedi jk between an epipolar tangencypi jk and the projection of the epipolar line from the opposite

camera that passes through the tangency pointp jik can be computed using the fundamental matrix, as stated

by Wong [138]:

di jk =
pT

i jkFi j p jik
√

(Fi j p jik)2
1 +(Fi j p jik)2

2

. (3.6)

The expressions(Fi j p jik)
2
1 and(Fi j p jik)

2
2 denote the first and second elements of the vector(Fi j p jik)

2. Note

thatpi j0 andpi j 1 are vertices of the polygon representing the silhouette.

Wong’s definition of the reprojection error described by Equation 3.6 is related to the Sampson approxima-

tion [58] that provides an estimate of the locations of two projections of a point from two noisy observations.

The Sampson approximation of the location of the frontier point projection is midway between the epipolar

tangency and the projection of the opposite epipolar tangent. An alternative formulation that measures the

distance to the Sampson approximation from the epipolar tangency (or from the projection of the opposite

epipolar tangent) gives exactly half the value given by Equation 3.6. Yamazoe et al. [141] describe a method

in which the locations of 3D points are explicitly modelled.However, results are not compared with the con-

ventional method of using an error function based on Equation 3.6. Some initial experimentation indicated
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that the method of Yamazoe et al. provides results that are almost identical to the those obtained with the

conventional approach for the camera setups covered in thisthesis. Hartley and Zisserman [58] recommend

using the Sampson approximation, since it gives excellent results in practice and removes the requirement

for 3n parameters to describe the locations ofn frontier points.

A measure of inconsistencywithin a silhouette set is the RMS (root mean square) value of all reprojection

errors (as specified by Equation 3.6) computed using all silhouette pairs within the silhouette set. This is

referred to as the ET (epipolar tangency) error within the silhouette set, and is used for calibration (Chapters 4

and 5).

For two silhouette sets and an associated relative pose, a measure of inconsistencyacrossthe silhouette sets

is the RMS value of all reprojection errors computed across all silhouette pairs in which one silhouette is

from each silhouette set. This is referred to as the ET error across the silhouette sets, and will be used to

optimise relative pose (Chapter 6).

This thesis makes use of the Levenberg-Marquardt [95] method to infer model parameters by adjusting the

parameter values to minimise ET error. This approach is usedin several contexts through the thesis.

3.5.3 Epipoles Inside Silhouettes

In cases in which the epipole falls within a silhouette, the ET error is not defined for the silhouette-epipole

pair. Epipoles lie within silhouettes when the baseline passes through the object.

Interestingly, a configuration in which baselines connecting viewpoints all pass through the object allow

consistent viewpoints to be specified for arbitrary single contour silhouettes. This is done by positioning

all viewpoints on a line so that the line passes through all silhouettes. By ensuring that the viewpoints are

sufficiently far apart, no silhouette will destroy the cone strip from any other silhouette; the visual cone inter-

section thus provides an object that exactly projects onto all silhouettes. Figure 3.13 shows an example using

shapes considered by Bottino and Laurentini, who challengereaders to determine consistent orthographic

views for three silhouettes: a square, a circle, and a triangle [11]. If the projection model is broadened from

an orthographic model to a perspective model, then consistent viewpoints can be found for the three shapes

(and indeed any number of single contour silhouettes), simply by selecting viewpoints sufficiently far apart

on a common line that passes through the silhouettes.

The problem of the existence of trivial solutions, such as the one illustrated in Figure 3.13, is not an issue

for the methods considered in this thesis, since silhouetteconsistency is never considered in cases in which

the pose of individual silhouettes can be freely adjusted. In the cases in which poses are freely adjusted,

either (1) multiple silhouettes correspond to each camera view, or (2) the pose of a silhouette set, rather than

a single silhouette, is adjusted.
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(a)

(b) (c) (d)

(e) (f)

Figure 3.13: (a) A 3D shape with square, circular and triangular silhouettes from certain viewpoints. If viewed looking onto its
triangular face from afar, the silhouette boundary is a square as shown in (b). As the viewpoint is moved towards the triangular face,
the silhouette boundary begins to change to become more circular (c), until the boundary is a circle (d), and then becomesmore
triangular (e), until the viewpoint is sufficiently close tothe triangular face that the silhouette is a triangle (f).

Nevertheless, it is still possible to obtain cases in which parameters are adjusted so that the epipole lies

within a silhouette for certain view pairs. To prevent the number of residual values from changing within a

Levenberg-Marquardt step, these cases are identified, and aresidual value is chosen so that the mean square

value over all epipole-outside pairs is the same as the mean square value of all residuals. To ensure efficiency,

cases in which the epipole lies within the axis-aligned bounding rectangle of a silhouette are treated as if the

epipole lies within the silhouette.

3.5.4 Efficiently Locating the Epipolar Tangencies

Computing the ET error requires the polygon vertices that are tangencies to be located. Since only outer

tangencies are used, they are computed from the convex hullsof the polygonal silhouette boundaries. Con-

vex hulls are efficiently computed from the boundaries usingMelkman’s algorithm [92] which has a time

complexity ofO(n) for n-vertex polygons. It achieves its efficiency by assuming that input vertices lie on

a non-self-intersecting polygon, rather than in general positions. Note that convex hulls need be computed

only once for each silhouette, whereas tangencies need to becomputed repeatedly when pose or camera

parameters are adjusted within an iterative minimisation of ET error. This is why it is important to locate the

tangencies efficiently.

A simple method for locating the two outer tangencies with respect to an epipole and a convex polygon is to

visit each vertex and to check whether the edges arriving andleaving the current vertex are on the same side

of the line through the current vertex and the epipole. If this is the case, then the current vertex is a tangency.

Unfortunately, this simple method is computationally inefficient.
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x≤ 0 y > 0 v = g−1 −∞ < v < −1
x≤ 0 y≤ 0 v = −1/(1+g) −1≤ v≤ 0
x > 0 y≤ 0 v = 1/(1−g) 0 < v≤ +1
x > 0 y > 0 v = g+1 +1 < v≤ +∞

Table 3.2: Lookup valuev as a function ofx, y andg = y/x, wherex andy are the vertex coordinates.

To speed up the location of tangencies, a method based on storing the edge angle associated with each vertex

is proposed. (The edge angle is the angle of the vector from each vertex to its successor—the edges are

directedand polygons are assumed to have vertices specified in anticlockwise order.) The method is appli-

cable to ET error computed using both orthographic and perspective camera models, but the implementation

is slightly different for the two camera models. Since the use of an orthographic camera model will be in-

vestigated in Chapter 7, locating tangencies with both orthographic and perspective models will be covered

here.

Forming the Edge Angle Data Structure

A monotonic function of angle is computed and stored as this avoids calls to the relatively computationally

expensive arctan function. A monotonic transform of the angle is sufficient as angle values are only used for

ordering edges.

The monotonic function of angle is computed using the equations presented in Table 3.2. The same approach

was used for efficiently computing viewing edges.

The lookup valuev of the successor edge for each vertex is stored in a sorted associative container ( the C++

mapdata structure was used). This allows angle values to be accessed inO(logn) complexity for ann-vertex

polygon. Sincen is small (the order of 100), a hashing approach which would allow O(1) access was not

used. (TheO(logn) retrieval was found to make a negligible contribution to total running time in practice.)

Orthographic Imaging Model

In the orthographic case, the epipole is a direction, ratherthan a point. To determine the first tangency,

a vertex must be found whose predecessor edge angle is less than the angle of the epipolar direction, and

whose successor edge angle is greater than the angle of the epipolar direction. If the angle of the epipolar

direction is greater than or smaller than all of the stored angles, then the relevant vertex is the vertex whose

edge angles correspond to the greatest and smallest angles (this is caused by the discontinuity ofv between

−∞ and+∞). The located vertex is a tangency, since its two edges lie onthe same side of the line specified

by the vertex and the epipolar direction.

The second tangency is located by applying the same procedure to the direction opposite to the epipolar

direction.
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Perspective Imaging Model

The above method relies on the tangent direction being knownin advance: it is the same as the epipolar

direction. In the perspective case, the epipole is not a direction, and the tangent direction is therefore not

known in advance. Instead, an approximate direction is computed as the direction from the epipole to the

silhouette centroid. If the epipole is sufficiently far fromthe silhouette, this will lead to the correct vertex

being located. However this is not guaranteed.

The located vertex must therefore be checked to determine whether it is a tangency. This is done by checking

whether its two edges lie on the same side of the line passing through the vertex and the epipole.

If the vertex is not a tangency, then the direction from the epipole to the vertex is used to find the next

candidate. The candidate direction therefore rotates clockwise until the tangency is found. Typically, the

tangency is found on the first iteration, but in cases where the epipole is close to the silhouette more than one

iteration may be required. An example is shown in Figure 3.14.

a

c

e

(a)

b

c

e

(b)

Figure 3.14: Clockwise rotation of the candidate direction for finding the tangency: (a) the initial candidate direction from the
epipolee to the silhouette centroidc; the located vertexa is not a tangency, so it is used to define the candidate direction for the next
iteration, (b) the located vertexb is a tangency, so the algorithm terminates.

Note that the tangency is always located, since the current candidate direction always locates a candidate

vertex that is further clockwise than the vertex that specifies the direction. For any direction there are two

tangencies: one to the left and one to the right. Since the polygon vertices are ordered anticlockwise, the

rightmost tangency will always be selected. This is becausethe range of directions between the edges arriving

and leaving the rightmost tangency vertex includes one thatis parallel to the current direction, whereas the

range corresponding to the leftmost tangency vertex includes one that is antiparallel. Since, from the point of

view of the epipole, a step to the right is always a clockwise turn (since the epipole is outside the silhouette),

the tangency will always be located.
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pR

pL

e

Figure 3.15: Two outer tangencies:pL has a greater angular extent to the left (anticlockwise) andpR has a greater angular extent to
the right (clockwise) with respect to the epipole.

The second tangency is located by computing direction vectors from the silhouette to the epipole, rather than

from the epipole to the silhouette as is used to locate the first tangency.

3.5.5 Determining Tangency Correspondences

To compute the ET error it is necessary to know which of the twoouter tangencies in one image of a pair

corresponds to which outer tangency in the other pair.

The literature mentions two approaches to solving the correspondences: (1) the correspondence that leads

to the lowest ET error is selected [54], or (2) correspondences are determined by knowing that cameras are

always upright: one pair will occur at the top of the image andanother pair at the bottom [60].

Since there is no prior knowledge of what is upright for the camera views considered in this thesis, this

constraint cannot be used to determine correspondences.

Instead of determining correspondences by selecting the pair with the lowest ET error, this section demon-

strates that epipolar tangency correspondences can be determined by considering the camera poses alone.

This provides a simpler algorithm.

A Method for Determining Correspondences

Figure 3.15 illustrates the two epipolar tangencies computed from a silhouette and an epipole. From the point

of view of the epipole, one of the tangenciespL will have a greater angular extent to the left (anticlockwise)

and the other tangencypR will have a greater angular extent to the right (clockwise).An alternative definition

is that the epipole lies to the right of silhouette normal atpR, and to the left of silhouette normal atpL.
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Let the tangencies from the first image bepLA andpRA, and those from the second bepLB andpRB. If exactly

one camera is behind the other camera (i.e., if one camera’sz coordinate specified in the other camera’s

reference frame is less than zero), then the correspondences are(pLA, pLB) and(pRA, pRB). If both cameras

are facing each other or if both cameras are behind one another, the correspondences are(pLA, pRB) and

(pRA, pLB). Examples illustrating the different configurations are shown in Figure 3.16.

Since orthographic cameras are at infinity, they are never behind one another, and the correspondences are

therefore(pLA, pRB) and(pRA, pLB).

An Explanation of the Method

Consider a frontier pointP that is generated by CamerasA andB. The surface normal of the frontier point is

used to define the up direction, so that it can be specified whether a camera lies to the left or to the right of a

line passing through the other camera and the frontier point. Figures 3.17a and 3.17b illustrate points in the

plane containingA, B andP. In this case,A lies to the right of the linePB, as the normal atP is facing out of

the page.

If CameraB is oriented so thatA is in front of CameraB (as illustrated in Figure 3.17a), then the epipoleeBA

(the image ofA) is on the same side ofpB (the image ofP) asA is of P. (In the example illustration, it is

to the right). This is because bothP andA are in front of CameraB. The pointP is always in front of both

cameras, since it is visible to both cameras.

If CameraB is oriented so thatA is behind CameraB (as illustrated in Figure 3.17b), then the epipoleeBA

(the image ofA) is on the opposite side ofpB (the image ofP) asA is of P. This is because the ray fromA

comes from behind CameraB and strikes the image plane from behind.

The handedness of an epipole with respect to the tangency is used to specify the handedness of the tangency.

This is illustrated in Figures 3.17c and 3.17d. In the case ofFigure 3.17c for example, the relevant epipole is

pB= pR, the tangency for whichpB lies to the right of the epipole.

P

(a)

P

(b)

P

(c)

Figure 3.16: Examples illustrating (a) two cameras each behind the other, (b) one camera behind and one camera facing, (c) two
cameras both facing the other. Dashed lines represent each camera’sz= 0 plane and arrows specifying the camera directions depart
from the camera centres and lie on the optical axes. In all cases, the external scene pointP is visible to both cameras.
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eBA
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Figure 3.17: CameraA is to the right ofB with respect to the linePBand with the normal to frontier pointP facing upwards (out of
the page): (a) CameraB is oriented so thatA is in front of it; (b) CameraB is oriented so thatA is behind it; (c) the image seen by
B for the configuration in (a); (d) the image seen byB for the configuration in (b). The image plane ofB is indicated with a dashed
line. Note that cameras are modelled with the image plane in front of the camera centre.

Since the handedness ofA with respect toPB is the opposite ofB with respect toPA, the corresponding

tangencies have opposite handedness if both cameras are in front of each other. However, if exactly one

of the cameras is behind the other, the handedness of one of the tangencies flips, and the corresponding

tangencies have the same handedness. If both of the cameras are behind the other, then the handedness of

both of the tangencies flips, and the corresponding tangencies have opposite handedness (as for the case

when both cameras are in front of one another).
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3.6 Summary

This chapter has covered the main aspects of the geometry of silhouette sets that will be used throughout

this thesis. First, the visual hull, a widely-used approximation of 3D shape computed from silhouette sets,

was introduced. Next, it was shown that viewing edges imposeconstraints on the shape of the object that

produced the silhouettes. Viewing edges were demonstratedto provide both a means for computing bounds

on the longest and shortest diameters of a stone, and for computing an approximation to the convex hull

of the 3D shape of the stone, the VEMH. In later chapters, the VEMH will be used for pose optimisation,

approximating shape properties, and recognition tasks.

The ET error, a measure of silhouette inconsistency that is based on the epipolar tangency constraint was in-

troduced. The ET error plays an important role in the calibration and recognition methods that are developed

in the chapters that follow. Efficient algorithms for computing ET error that incorporate some new ideas have

been described.
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Chapter 4

Multiple Views from Mirrors

4.1 Introduction

Multiple silhouette images of particles for silhouette-based analysis are typically captured using a multi-

camera setup [108]. Such equipment is often not readily available, and a simpler acquisition system may be

beneficial for early investigations. For this reason, a simple setup using only two plane mirrors and a single

digital camera was used for initial data acquisition.

In addition to providing a means for capturing calibrated silhouette sets of particles, the method can be used to

create 3D visual hull models of objects for other applications such as 3D multimedia content creation. Other

shape-from-silhouette methods [91,97,99] for 3D content creation typically make use of calibration objects,

turntables, or synchronised multi-camera setups. The proposed setup provides a simple way of creating 3D

multimedia content that does not rely on specialised equipment. The setup need not be accurately positioned,

since self-calibration is used to determine all pose and internal parameters∗.

Two mirrors are used to create five views of an object: a view directly onto the object, two reflections, and

two reflections of reflections (see Figure 4.1). The image is segmented into foreground and background

regions producing an image containing five silhouette sub-images.

The method presented in this chapter describes how the internal camera parameters and pose associated with

each of the five silhouette views can be determined from the silhouette outlines alone. This means that self-

calibration is possible: no calibration markers are required. The method therefore allows a 5-view visual hull

model to be computed from a single snapshot of the scene.

By moving the camera, yet keeping the object and mirrors in the same positions, silhouettes from different

viewpoints can be captured. The relative pose of the camera can be computed for the different shots, allowing

∗Matlab software to perform the self-calibration is available from http://www.dip.ee.uct.ac.za/ ˜ kforbes/ .
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Figure 4.1: The two-mirror setup used to capture five views of an object in a single image.

silhouette sets with an arbitrary number of silhouettes to be captured. Figure 4.2 shows an example of two

images of a scene captured from different viewpoints, allowing a 10-view silhouette set to be formed.

Another approach is to change the pose of the object between shots to capture different viewpoints. Chapter 6

explains how multiple 5-view sets can be merged into a singleset.

Part of the work described in this chapter was presented as a conference paper [44]. This is an extension of

earlier work that was presented as another conference paper[47]. The earlier work assumes an orthographic

projection model and requires a dense search of parameter space to determine initial estimates. The method

described in this chapter improves on this earlier work by providing closed form solutions for the initial

parameter estimates using a perspective camera model.

4.2 Related Work

The computer vision literature describes various approaches for capturing silhouettes of an object from mul-

tiple viewpoints so that shape-from-silhouette reconstruction can be applied. Several approaches make use of

self-calibration: the silhouettes themselves are used to estimate camera pose and internal parameters. Rather

than assuming general poses for all silhouettes, these approaches typically make use of problem-specific con-

straints such as circular motion, known orientation, or coplanar viewing directions. The method described in
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Figure 4.2: Two images of a two-mirror setup positioned so that five views of the object can be seen. Note that the camera has
moved between shots, but the mirrors and object have not moved.

this chapter also makes use of problem specific constraints.The constraints in this case are imposed by the

mirror configuration that is used to produce multiple views.

Wong and Cipolla [139] describe a system that is calibrated from silhouette views using the constraint of

circular motion. Once an initial visual hull model is constructed from an approximately circular motion

sequence, additional views from arbitrary viewpoints can be added to refine the model. The user must

manually provide an approximate initial pose for each additional view which is then refined using an iterative

optimisation. Their method of minimising the sum-of-square reprojection errors corresponding to all outer

epipolar tangents is used in this chapter to provide a refinedsolution.

Okatani and Deguchi [101] use a camera with a gyro sensor so that the orientation component associated

with each silhouette view is known. An iterative optimisation method is then used to estimate the positional

component from the silhouettes by enforcing the epipolar tangency constraint.

Bottino and Laurentini [11] provide methods for determining viewpoints from silhouettes for the case of

orthographic viewing directions parallel to the same plane. This type of situation applies to observing a

vehicle on a planar surface, for instance.

Many works describe the use of mirrors for generating multiple views of a scene. For example, Gluckman

and Nayar [53] discuss the geometry and calibration of a two-mirror system using point correspondences.

Han and Perlin [55] use a kaleidoscope to simultaneously view a surface from many directions. This allows

the bidirectional texture function to be computed without mechanical movement. Hu et al. [62] describe

a setup similar to ours, however they use constraints imposed by both the silhouette outlines and point

correspondences for calibration.

Huang and Lai [63] have also extended our original two-mirror setup [47] to use a full perspective camera

model (as described in this chapter). However, their approach is different and was developed entirely inde-

pendently of our work (and was published subsequent to both our original method and our full perspective

method [44]). Their method of solving for the orientations is based on the equations involving the mirror
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normals, and is similar to our original algorithm for an orthographic projection model. Huang and Lai’s

method requires a least squares cost function to be minimised to estimate the focal length. This means that

an initial estimate of the focal length must be provided. Themethod described in this chapter provides a

closed form solution for the focal length.

Moriya et al. [96] describe an idea that is related to the workdescribed in this chapter. Epipoles are computed

from the silhouette outlines of three shadows of a solid castonto a plane, and are shown to be collinear.

The authors do not, however, mention any applications that can be derived from their observed collinearity

constraint.

4.3 Epipoles from Bitangents

This section deals with the case where a camera views an object and its reflection. It is shown how the

epipole corresponding to the virtual camera (the reflectionof the real camera) can be computed directly from

the silhouette outlines of the real object and the virtual object in the image captured by the real camera. This

result will be used to calculate the positions of epipoles for the two-mirror setup.

Figure 4.3 shows an example of a camera observing a real object and its reflection in a mirror. The virtual

camera is also shown in the figure. Consider a planeΠ1 that passes through the camera centresCR andCV

pRR1

pRV1

pRR2

pRV2 mirrorreal camera

virtual camera

real object

virtual object

CR

CV

eRV

eVR

PR1

PV1

PR2

PV2

LR1

LR2

Figure 4.3: A camera viewing an object and its reflection. The epipole corresponding to the virtual camera can be computed from
the silhouette bitangentsLR1 andLR2.

60



and touches the real object at the pointPR1. By symmetry,Π1 will touch the virtual object at the pointPV1

which is the reflection ofPR1. SinceΠ1 is tangent to both objects and contains the camera centresCR and

CV , PR1 andPV1 are frontier points. They project onto the silhouette outlines on the real image at pointspRR1

andpRV1. The pointspRR1, pRV1 and the epipoleeRV (the projection ofCR into the real image) are therefore

collinear, since they lie in bothΠ1 and the real image plane. Observe that the bitangentLR1 passing through

these three points can be computed directly from the silhouette outlines: it is simply the line that is tangent

to both silhouettes. Another bitangentLR2 passes through the epipole and touches the silhouettes on the

opposite side toLR1. These tangency points lie on a planeΠ2 that is tangent to the opposite side of the object

and passes through both camera centres. Provided that the object does not intersect the line passing through

both camera centres, there will always be two outer epipolartangentsLR1 andLR2 that touch the silhouettes

on either side.

The position of the epipoleeRV can therefore be computed by determiningLR1 andLR2 from the silhouette

outlines: it is located at the intersection ofLR1 andLR2. Note that the epipole is computed without requiring

knowledge of the camera pose and without requiring any pointcorrespondences.

Also note that, by symmetry, the real camera’s silhouette view of the virtual object is a mirror image of the

virtual camera’s silhouette view of the real object. The silhouette view observed by a reflection of a camera

is therefore known if the camera’s view of the reflection of the object is known.

4.4 Two-Mirror Setup

Figure 4.4 shows an example of a two-mirror setup that is usedto capture five silhouette views of an object

in a single image. The camera is centred atCR and observes a real objectOR. The camera also captures

the image of each of four virtual objectsOV1, OV2, OV12, andOV21. ObjectOV1 is the reflection ofOR in

Mirror 1; OV2 is the reflection ofOR in Mirror 2; OV12 is the reflection ofOV1 in Mirror 2; andOV21 is the

reflection ofOV2 in Mirror 1.

The proposed method requires six virtual cameras to be considered. The virtual cameras are reflections of

the real cameraCR. The virtual camerasCV1, CV2, CV12, andCV21 are required, as their silhouette views of

the real object are the same as the silhouettes observed by the real camera (or reflections thereof). Since

silhouettes from the real camera are accessible, the silhouettes observed by the four virtual cameras can be

determined. Each of the five cameras’ silhouette views of thereal object can then be used to compute the

five-view visual hull of the object.

The virtual camerasCV121 (the reflection ofCV12 in Mirror 1), andCV212 (the reflection ofCV21 in Mirror 2)

are to be considered too, since it turns out that their epipoles can be computed directly from the five silhou-

ettes observed by the real camera. These epipoles, togetherwith the epipoles from the virtual camerasCV1

andCV2 can then be used to calculate the focal length of the camera.
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OR

Mirror 1
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Figure 4.4: Mirror setup showing one real and four virtual objects, andone real and six virtual cameras.

4.5 Analytical Solution

This section presents a method to calculate the focal lengthand principal point of the camera and the poses

of the virtual cameras relative to the pose of the real camerafor the five camera views in an image. Next, a

method for determining camera motion between snapshots is presented. This allows all silhouettes from all

images to be specified in a common reference frame. Closed form solutions in which the required param-

eters are determined from the silhouette outlines alone areprovided. Silhouette outlines are represented by

polygons, and pixels are assumed to be square.

First, it is demonstrated how lines that are tangent to pairsof silhouettes can be used to calculate the position

of four epipoles corresponding to four virtual cameras. Theprincipal point is constrained by the epipoles to

a line in each image; the intersection of the lines is the principal point. Next, it is shown how the focal length

is a function of the relative positions of these four epipoles. Once the focal length is known, it is shown

that mirror and camera orientation are easily determined from the positions of two epipoles. The positional

component of the poses can be computed using the epipolar tangency constraint. Finally, it is shown how
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the camera poses between shots are constrained by the constant positions of the mirrors with respect to the

object.

4.5.1 Four Epipoles from Five Silhouettes

Here, it is shown how the epipoles are computed from pairs of silhouettes using the result explained in

Section 4.3: the epipole corresponding to a camera’s reflection can be computed from the camera’s silhouette

image of an object and its reflection by finding the intersection of the two outer bitangents. Figure 4.5 shows

how the epipoleseV1, eV2, eV121, andeV212 are computed from the outlines of the five silhouettes observed by

the real camera. The distancesa, b, andc between the epipoles will be used for computing the focal length.

The outlineγRR corresponds to the objectOR, andγRV1 corresponds toOV1 which is the reflection ofOR in

Mirror 1. The intersection of the pair of lines that are tangent to bothγRR andγRV1 is therefore the epipole

eV1, sinceCV1 is the reflection ofCR in Mirror 1. The two lines that are tangent to bothγRV2 andγRV21 also

meet ateV1, sinceOV21 is the reflection ofOV2 in Mirror 1. Similarly, the pairs of lines that are tangent to

bothγRR andγRV2, and toγRV1 andγRV12 meet ateV2.

eV1

eV212
eV121

eV2

a

b
c

γRR

γRV1 γRV2

γRV12

γRV21

Figure 4.5: Computing epipoleseV1, eV2, eV121, andeV212 from the silhouette outlines in an image.

ConsiderCR observingOV1. ObjectOV21 is related toOV1 through three reflections. ObjectOV1 must be

reflected by Mirror 1 (to getOR) and then Mirror 2 (to getOV2) and then again by Mirror 1 to getOV21. The

effect of these three reflections can be considered to be a single reflection. Applying the triple reflection to

CR givesCV121. The two lines that are tangent to bothγRV1 andγRV21 therefore meet ateV121. This is again

because a camera (CR) is observing silhouettes of an object (OV1) and its reflection (OV12), so the projection

of the camera’s reflection (CV121) can be computed from the silhouette bitangents. Similarly, the two lines

that are tangent to bothγRV2 andγRV12 meet ateV212.
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Note that the epipoleseV1, eV2, eV121, andeV212 are collinear, since they all lie in both the image plane of the

real camera and in the planeΠC in which all camera centres lie.

4.5.2 Focal Length and Principal Point from Epipoles

It is now shown how the focal length is computed from the positions of the four epipoleseV1, eV2, eV121, and

eV212. This is done by considering the positions of the camera centres in the planeΠC.

First, two new mirrors, Mirrors A and B, which do not correspond to physical mirrors in the scene, are

introduced. This approach makes the problem of calculatingthe focal length tractable. Mirror A has the

same orientation as Mirror 1, but is positioned so that it passes midway betweeneV1 andCR (see Figure 4.6a

in which the positions of points inΠC are shown). The pointeV1 is therefore the reflection ofCR in Mirror A.

Mirror A

Mirror 1

Mirror 2

D

E

F

G

image plane
eV1 eV212 eV121 eV2

CV1

CV212

CV121

CV2

CV21CV12

CR

(a)

α
α β
β

Mirror A Mirror B

G

H

J

K

image
plane

eV1 eV212 eV121 eV2

CR

a b c

pΠfΠ

(b)

Figure 4.6: Diagrams showing (a) the intersections of Mirror 1, MirrorA and Mirror 2 with ΠC along with the positions of the
cameras and epipoles, all of which lie inΠC, and (b) computingfπ andpπ from the four epipoleseV1, eV2, eV121, andeV212

PointE is the reflection ofeV1 in Mirror 2, andF is the reflection ofE in Mirror A. Note thatF lies on the ray

passing througheV121 andCR. Also note thatF will stay on this line if the position (but not the orientation)

of Mirror 2 changes. This is because triangles△CRCV1D and△CReV1G are similar.

Figure 4.6b shows the positions of the epipoles andCR in ΠC. The distancesa, b, andc between the epipoles

(as shown in the figure) are used to compute the distancefΠ betweenCR and the image plane in the plane

ΠC. The distancefΠ is then used to calculate the focal length. The figure also shows Mirror B which has

the same orientation as Mirror 2, and is positioned midway betweenCR andeV2. The line joiningeV2 to its

reflection in Mirror A meets Mirror B at pointJ which projects ontoeV212.
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The triangle△HeV2CR is similar to△CReV1G, the line segment fromeV121 to eV2 is of lengthc, and the

line segment fromeV1 to eV121 is of lengtha+ b. This indicates that the ratio of the sides of△HeV2CR to

△CReV1G is c : (a+b). This means thatd(eV1,G) = d(CR,ev2)(a+b)/c. (The notationd(x,y) indicates the

distance betweenx andy.)

Similarly, the triangle△KeV1CR is similar to△CReV2J, the line segment fromeV1 to eV212 is of lengtha, and

the line segment fromeV212 to eV2 is of lengthb+c. This indicates that the ratio of the sides of△KeV1CR to

△CReV2J is a : (b+c). Therefored(eV2,J) = d(CR,eV1)(b+c)/a.

This allowsd(CR,eV1) to be written in terms ofd(CR,eV2), since△CReV2J is similar to△CReV1G:

d(CR,eV1) =

√

c (c+b)a (a+b)

c (c+b)
d(CR,eV2). (4.1)

The sides of△CReV1G are now known up to a scale factor.

The angle∠CReV1G = α+ β can be computed using the cosine rule:

cos(α+ β) = 1/2

√

c (c+b)a (a+b)

(c+b)(a+b)
. (4.2)

The cosine rule can be used to determine the sides of△eV1CReV2. (The angle∠eV1CReV2 = 180◦−α−β.)

The value offΠ can now be stated in terms ofa, b, andc (with the help of the Matlab Symbolic Toolbox for

simplification):

fΠ = 1/2
(a+b+c)

√

ac(3ac+4ab+4bc+4b2)

a2 +ab+c2+bc+ac
. (4.3)

The point closest toCR on the line containing the epipoles, is

pΠ = eV1 +1/2
(2a+2b+c)a (a+b+c)

a2 +ab+c2+bc+ac
eV2−eV1

||eV2−eV1||
. (4.4)

The line passing throughpΠ and perpendicular to the line containing the epipoles passes through the principal

point p0. The principal point can therefore be computed as the intersection of two such lines from two images

of the scene. (If the principal point is assumed to lie at the image centre, then a single snapshot could be

used.)

The focal length (the distance fromCR to the image plane) can now be calculated frompΠ, the principal

point p0 and fΠ (see Figure 4.7):

f =
√

f 2
Π −||p0−pΠ||2. (4.5)
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Figure 4.7: View of the camera perpendicular to both the image plane andΠC.

4.5.3 View Orientations

Once the focal length of the camera has been calculated, the view orientation can be computed relatively

easily. The mirror normal directionsm1 andm2 are computed from the focal length, the principal pointp0

and the epipoleseV1 andeV2:

m1 = −

[

eV1−p0

f

]

, m2 = −

[

eV2−p0

f

]

. (4.6)

A 3× 3 matrix R that represents a reflection by a mirror with unit normalm̂ = [mx,my,mz]
T is used to

calculate view orientation:

R =







−m2
x +m2

y +m2
z −2mxmy −2mxmz

−2mxmy m2
x−m2

y +m2
z −2mymz

−2mxmz −2mymz m2
x +m2

y−m2
z






. (4.7)

4.5.4 View Positions

The pointCV1 is constrained to lie on the line passing througheV1 andCR. Similarly, the pointCV2 is

constrained to lie on the line passing througheV2 andCR. Since absolute scale cannot be inferred from the

image (if the scene were scaled, the image would not change),CV1 is fixed at unit distance fromCR. The

only positional unknown across the entire setup is now the position ofCV2 on the line passing througheV2

andCR.

To solve forw, the distance fromCR toCV2, the epipolar tangency constraint is used. This constraintrequires

that a tangent to a silhouette outline that passes through the epipole must be tangent to the corresponding

point in its projection into the image plane of the other view. The relationship between the silhouette views

of camerasCV1 andCV2 is used to enforce this constraint.
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The poses of the camerasCV1 andCV2 are specified by 4× 4 rigid transform matrices from the reference

frame of the real camera:

M =

(

R t

0T 1

)

, (4.8)

where the translational componentt is given byt = 2(mxpx +mypy+mzpz)(mx,my,mz)
T and(px, py, pz)

T is

a point on the mirror.

The matrixM1M
−1
2 represents the rigid transform from the reference frame ofCV2 to that ofCV1.

The pointpV2 is one of two outer epipolar tangencies formed by lines passing througheV2V1 (the projection

of CV1 onto the image plane of cameraCV2) and tangent to the silhouette observed by the cameraCV2.

The point pV1V2 is the projection ofpV2 into cameraCV1. It must correspond topV1, one of two outer

epipolar tangencies formed by lines passing througheV1V2 (the projection ofCV2 onto the image plane of

cameraCV1).

The epipolar tangency constraint is expressed as

(pV1V2×eV1V2) ·pV1 = 0, (4.9)

wherepV1V2, eV1V2, andpV1 are represented by homogeneous coordinates. In other words, the line passing

throughpV1V2 andeV1V2 must also pass throughpV1.

Equation 4.9 can be specified in terms ofpV1, pV2, the computed orientation and camera internal parameters,

andw. The Matlab Symbolic Toolbox was used to determine a solution for w (the equation is too large to

reproduce here). Unfortunately, the values of bothpV1 andpV2 are unknown, since the epipoles from which

they may be computed are functions of the unknownw.

The values ofpV1 and pV2 can be determined by exhaustive search, by finding the polygon vertex pair that

fulfils the epipolar tangency constraint. Instead, the needfor an exhaustive search is removed by using a

parallel projection approximation to determine approximate correspondences. The tangencies are selected

as the support points for outer tangent pairs that are parallel to the projected viewing direction. Unless the

camera is very close to the object, this method selects either the same vertices, or vertices very close to the

true tangencies under a perspective projection.

4.5.5 Combining Five-View Silhouette Sets

The calibration procedure described above allows five silhouette views from one image to be specified in a

common reference frame. The pose and internal parameters ofthe four virtual cameras and one real camera
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are known. The silhouettes observed by these cameras are also known: the silhouettes observed by the virtual

cameras are those observed by the real camera of the corresponding virtual object.

The next step is to specify the silhouette sets from two or more images in a common reference frame. This

is easily achieved, since the mirror poses are known with respect to the real camera for each image. The

five-view silhouette sets are aligned by aligning the mirrors across sets. There are two additional degrees

of freedom that the mirrors do not constrain: a translation along the join of the mirrors, and an overall

scale factor. These are approximated using the epipolar tangency constraint and a parallel projection model

(as for computingw): each five-view silhouette set is scaled and translated along the mirror join so that

outer epipolar tangents coincide with the projected tangents from silhouettes in the other silhouette set. Each

silhouette pair between silhouettes in different sets provides an estimate of translation and scale. The average

result over all pairings is used.

4.6 The Refined Self-Calibration Procedure

The method described in Section 4.5 provides a means for computing all calibration parameters. However,

better results are obtained if parameter estimates are refined in several steps. This is done by adjusting

the parameters to minimise the sum-of-of square distances between epipolar tangencies and corresponding

projected tangents using the Levenberg-Marquardt method.The geometry of the problem naturally allows

for parameters to be decoupled from one another, allowing minimisation to be applied to small numbers of

parameters at a time.

The first step of the procedure is to determine which silhouettes correspond to which camera views for each

of the five silhouettes in the image. This is done by ordering the five silhouettes along their convex hulls, and

then considering the five arrangements. The four epipoleseV1, eV2, eV121, andeV212 are computed for each

of the five possible arrangements. The lowest sum-of-squaredistances between silhouette tangents passing

through the epipoles and tangents on the corresponding silhouettes is used to select the correct arrangement.

With noise, the tangent intersections used to calculate thefour epipoles will, in general, produce epipoles

that are not collinear. The epipoleseV1 andeV2 each lie at the intersection of four tangents. In the presence

of noise, the four tangents will not intersect at a common point. For a refined estimate, the positions of the

four epipoles are parameterised using only six degrees of freedom, so that the epipoles are constrained to be

collinear. The sum-of-square distances from tangency points to the corresponding tangents generated by the

opposite silhouette is minimised. The tangents pass through the appropriate epipole and touch the silhouette.

To form a starting point (initial estimate) for the minimisation, the tangent intersections are computed, and

the points closest to an orthogonal regression line throughthe intersection points are used.

Focal length and principal point values are then computed for each image, averaged, and adjusted to minimise

reprojection error. The unknown positional component is computed next for each image. Parameters are then
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adjusted by minimising reprojection error using all possible silhouette pairings between silhouettes within

each set.

Finally, the five view sets are merged into a single large set as described in Section 4.5.5. A final minimisation

adjusts all parameters simultaneously to minimise the sum-of-square distances across all silhouette pairings.

There are 10k(5k−1) distance values fork input images.

4.7 Experiments

4.7.1 Qualitative Results from Real Data

Qualitative testing of the proposed self-calibration method was carried out using the two 2592×1944 images

of a toy horse shown in Figure 4.2. The five silhouettes in eachimage were determined using an intensity

threshold.

Figure 4.8 illustrates the bitangents and epipoles computed from one of the two input images. Poses and

eV1

eV212
eV121

eV2

Figure 4.8: Computed bitangents and epipoles overlaid on one of the input images of a toy horse.

internal parameters were computed from the positions of theepipoles in the two input images using the

methods described in this chapter. Visual hulls were computed from the silhouette to provide a qualitative

assessment of the 3D shape reconstructions that one can obtain with the two-mirror setup.

The resultant visual hull model is shown in the third column of Figure 4.9. The figure also shows visual hull

models created using only the five silhouettes from each of the images. This demonstrates the improvement

in the quality of the model obtained by merging the silhouette sets. Note that both five-view visual hulls have

regions of extra volume that are not present in the ten-view visual hull.

The angle between the mirrors was computed to be 73.1 degrees. The focal length was computed to be 2754

pixels and the principal point located at(1306,981). This compares with values of 2875 and(1297,958)
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Figure 4.9: Two views of the visual hull of the horse formed from the silhouettes in image 1 (first column), the silhouettes in image
2 (second column), and all ten silhouettes (third column).

computed using a checkerboard calibration method (Jean-Yves Bouguet’s Camera Calibration Toolbox for

Matlab). Note, however, that a direct comparison of individual parameters does not necessarily provide a

good indication of the accuracy of the calibration parameters. The calibration parameters should provide

an accurate mapping from 2D image points to 3D raysin the volume of interest. The interplay between

the different parameters can result in different parametersets varying to some degree in magnitude, yet still

providing a good mapping in the volume of interest. A difference in principal point location can largely

be compensated for by a difference in translation parameters, for instance. A more meaningful measure of

calibration parameter quality using thesilhouette calibration ratiois described in Section 4.7.2.

Figure 4.10 provides further qualitative results, showingvisual hulls of various objects computed using the

proposed two-mirror setup.

4.7.2 Images Captured with a Moving Camera

Ball Images

To provide a quantitative evaluation of the viewpoint positions provided by the two-mirror setup, two images

of a ball bearing were used. Since the imaged object is of known shape (it is spherical), it is possible to

quantify the geometrical constraints that its silhouettesimpose on its 3D shape.

Two images of a ball were captured from two viewpoints using the two-mirror setup (see Figures 4.11a

and 4.11b). Self-calibration was applied to the two images using the method described in this chapter.

The 3D position and diameter of the sphere were then estimated by iterative optimisation: the sum-of-

square distances between the projected ball and the polygonal boundary vertices of the observed silhouettes

was minimised using the Levenberg-Marquardt method. The inferred sphere parameters and calibration
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Figure 4.10: Visual hulls computed using the proposed two-mirror setup. Input images are shown in the to the left, and the resultant
visual hulls are shown to the right. From top to bottom: a cup,a toy locust, a toy lion, and a piece of gravel. Black velvet was used
as a background for the cup and the locust, whereas a backlight was used for the lion and the gravel.
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Figure 4.11: Shape inference from silhouettes of a ball bearing using the two-mirror setup: (a) first input image, (b) second input
image, (c) ten viewpoints corresponding to the ten observedsilhouettes, (d) synthetic 5-view visual hull corresponding to the first
input image (e) synthetic 5-view visual hull correspondingto the second input image, (f) synthetic 10-view visual hullcorresponding
to both input images, (g)–(i) distributions of bounds of thediameter computed over all directions as a proportion of thetrue diameter.
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parameters were then used to generate exact synthetic silhouette projections of the sphere that corresponds

to the real data. This allows investigation of the inherent geometrical limitations of the extent to which 3D

shape can be investigated from silhouettes using the two-mirror setup. In other words, the limitations that

exist in the absence of noise can be investigated.

Results are presented in Figure 4.11. The ten silhouettes captured in the two images provide ten well-

distributed viewpoints (Figure 4.11c).

The second row of the figure shows visual hulls computed from the 5-view silhouette sets from the images

considered individually, and from the 10-view silhouette sets of both images considered together. The cone

strip components are coloured according to the corresponding camera view. The 5-view visual hull from the

first image is 105.3% of the sphere volume. The 5-view visual hull from the second image is clearly a poor

approximation to the sphere, and is 149.8% of the sphere volume. Nevertheless, the 10-view visual hull is

only 101.2% of the sphere volume, so both silhouette sets make significant contributions to carving away

volume that is not part of the imaged object. (Since exact silhouette sets are used, the computed visual hull

cannot be less than 100% of the sphere volume.)

The last row of Figure 4.11 quantifies the geometrical limitations that the three silhouette set impose on the

diameter of the imaged object over all directions. (Coverage of all directions was approximated by con-

sidering directions specified by six icosahedron subdivisions.) The plots indicate that the 5-view silhouette

set corresponding to the second image does not provide tightconstraints on object shape. For instance, the

upper bound on the diameter is 250% of its actual value in somedirections. Since both the upper and lower

bounds on the diameter in a given direction are closer to 100%for the 10-view silhouette set, it provides

tighter constraints on the shape of the imaged object than either of the 5-view silhouette sets.

Gravel Images

Two images were captured for each of twenty pieces of gravel using the two-mirror setup. Figure 4.12 shows

an example.

Although the primary purpose of capturing the data set was togenerate synthetic data based on real data,

the real data also allow the repeatability of the estimated calibration parameters to be quantified. Results

that quantify repeatability are presented in Table 4.1. Themirrors and the camera internal parameters were

mirror angle [degrees] f [pixels] u0 [pixels] v0 [pixels]

mean 74.605 3862.7 653.55 467.6
standard deviation 0.017766 51.499 29.995 24.929

Table 4.1: Mean and standard deviation for parameter values computedusing 20 different stones. Results are shown for the angle
between the mirrors, the focal lengthf , and the principal point(u0, v0). Two images from different viewpoints were used for each
stone.
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Figure 4.12: Example of two images of a piece of gravel.

fixed during the capture of 40 images of the 20 pieces of gravel, whereas the camera was held by hand and

moved between shots. The estimated internal camera parameters tend to vary from set to set (for instance

the coefficient of variation of the focal length is 1.3%). This occurs because small variations in these values

can largely be absorbed by camera pose parameters while still maintaining an accurate image point to 3D

ray mapping in the volume of interest. The angle between mirrors computed over twenty calibrations has a

standard deviation of less than1/50th of a degree.

Synthetic Data

To investigate the sensitivity of the method to noise, synthetic images were used. This allows the exact

values of calibration parameters to be known. To ensure thatrealistic parameter values were considered,

the synthetic images were based on the real images of the gravel. Exact polygonal projections of the ten-

view polyhedral visual hull of the gravel were generated using the output provided by the real images. This

provides an exactly consistent set of silhouettes.

Quantisation noise was introduced by rendering the polygonal silhouettes, first at the original image resolu-

tion (2592×1944), and then at successively lower resolutions.

Boyer [14] introduced the silhouette calibration ratioCr as a measure of the combined quality of silhouettes

and camera parameters. Ideally, some point on any viewing ray in a silhouette must intersect alln−1 other

visual cones of then-view silhouette set. The ratio of the actual maximum numberof intersections for points

on the ray ton− 1 is a measure of consistency;Cr is the mean value for all rays from all silhouettes. A

measure of inconsistency is given by 1−Cr .

Figure 4.13 shows plots of 1−Cr versus the degree of resolution reduction for the computed camera pa-

rameters and quantised silhouettes. Results are also shownwith the computed camera parameters and exact

silhouettes, as well as exact camera parameters and quantised silhouettes. The plots show that without

refinement, the poor accuracy of the camera parameters is a greater contributor to inconsistency than the
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Figure 4.13: Plots of image resolution versus silhouette inconsistency measured using the silhouette calibration ratio for self-
calibration (a) without, and (b) with refinement. The trend lines pass through the mean values of the data points. To aid visualisation,
a small amount of jitter has been added to the horizontal components of the data points.

75



quantisation of the silhouettes alone. However, for the refined camera parameters, the quantised silhouettes

and exact camera parameters are more inconsistent than the exact silhouettes and the computed camera pa-

rameters, demonstrating the accuracy of the refined calibration method. In other words, the quantisation of

the silhouettes is a greater contributor to inconsistency than the camera parameters computed with refinement

from the quantised silhouettes.

4.7.3 Images Captured with a Fixed Camera

Silhouette sets captured using a freely moving camera are calibrated up to an unknown scale factor. This

means that dimensionless quantities such as the ratios usedto specify particle elongation and flatness can

be estimated from silhouette sets, but properties that require absolute scale such as particle volume can not.

If the camera is kept in a fixed position with respect to the mirrors (using a tripod, for instance), then the

relative scale for all silhouette sets will be the same. Absolute scale can be enforced by imaging an object of

known size such as a ball bearing.

A data set of 220 pieces of gravel was captured using the mirror setup with the camera fixed to a tripod

with a tilt angle of approximately 45◦. Three images were captured of each stone, with the stones manually

reoriented between shots. Polyhedral models of the stones are illustrated in Appendix C on page 220. The

data set of 220 pieces of gravel is used to test shape and recognition algorithms in later chapters.

(a) 12.700 mm ball (b) 15.875 mm ball (c) 19.050 mm ball

(d) 25.400 mm ball (e) 31.750 mm ball (f) 38.100 mm ball

Figure 4.14: Six images of six ball bearings used for enforcing scale.
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Scale was enforced for the gravel silhouette sets by fitting asphere to silhouettes of an imaged ball bearing

as described in Section 4.7.2. Stones were grouped in batches of 20 and calibration and scale enforcement

was carried out separately for each batch.

To test the accuracy of scale enforcement, six images of ballbearings of different sizes were captured (see

Figure 4.14). For each ball, the calibration and scale information estimated with another ball was used, and

together with the ball’s silhouettes the best fit sphere was computed. The diameter of the best fit sphere is

compared with the ground truth diameter in Table 4.2. Results are shown for all pair combinations. The

largest absolute percentage error for an estimated diameter is 0.281%.

12.700 mm 15.875 mm 19.050 mm 25.400 mm 31.750 mm 38.100 mm
ball ball ball ball ball ball

12.700 mm 15.905 mm 19.062 mm 25.453 mm 31.786 mm 38.168 mm
calibration (+0.189%) (+0.065%) (+0.207%) (+0.115%) (+0.180%)
15.875 mm 12.676 mm 19.027 mm 25.405 mm 31.727 mm 38.097 mm
calibration (-0.189%) (-0.123%) (+0.018%) (-0.074%) (-0.009%)
19.050 mm 12.691 mm 15.894 mm 25.438 mm 31.770 mm 38.152 mm
calibration (-0.071%) (+0.122%) (+0.150%) (+0.064%) (+0.135%)
25.400 mm 12.671 mm 15.869 mm 19.021 mm 31.724 mm 38.098 mm
calibration (-0.231%) (-0.037%) (-0.152%) (-0.081%) (-0.005%)
31.750 mm 12.678 mm 15.879 mm 19.033 mm 25.418 mm 38.132 mm
calibration (-0.175%) (+0.024%) (-0.089%) (+0.073%) (+0.085%)
38.100 mm 12.664 mm 15.862 mm 19.014 mm 25.394 mm 31.721 mm
calibration (-0.281%) (-0.080%) (-0.189%) (-0.022%) (-0.090%)

Table 4.2: Ball diameters estimated from a 5-view image of a ball usingcalibration parameters determined by a 5-view image of a
ball of another size. Estimated ball diameter and percentage error are shown.

4.8 Summary

A novel image capture setup that provides a simple means for capturing multiple silhouettes of an object

from well-distributed viewpoints has been described. Thischapter has demonstrated how silhouettes impose

constraints that allow the pose and internal parameters associated with each view to be computed from the

silhouettes alone. Since self-calibration is applied, there is no need for accurate positioning of the apparatus,

and there is no need for a calibration object with control points whose coordinates must be known in advance.

Synthetic images have been used to demonstrate that the computed camera parameters have less effect on

quality as measured by the silhouette calibration ratio than the noisy silhouettes from which they are com-

puted.

The approach is limited to objects that can be segmented fromthe background to produce silhouettes. Objects

are required to be positioned so that five non-overlapping views are visible to the camera.
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The method provides the required input for multi-view silhouette-based particle analysis applications (such

as recognition and shape analysis), and is also potentiallya useful tool for 3D multimedia content creation.

Later chapters will quantify the performance that can be achieved for shape property estimation and matching

applications using the two-mirror setup described in this chapter. This will be done using the data set of

images of 220 pieces of gravel.
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Chapter 5

Configuration and Calibration of a

Multi-Camera Setup

5.1 Introduction

A multi-camera setup allows a much greater throughput rate than the two-mirror setup described in the

previous chapter, but this comes at the cost of greater monetary expense.

The setup used in this thesis consists of six simultaneouslytriggered cameras. Particles are placed on a

feeder above the cameras. The feeder causes the particles tofall past the cameras one by one at a rate of

approximately ten particles per second. As each particle falls, it passes through a light curtain that triggers

the cameras so that a 6-view image set of the particle is captured. The multi-camera setup used in this work

was built by Anthon Voigt and his team at the premises of the company that commissioned part of the work

described in thesis. The hardware aspects of the multi-camera setup lie outside the scope of this thesis.

In this chapter, the rationale behind the positioning of thecameras is discussed. A simple method for cali-

brating the cameras using images of a ball of known size is then presented.

5.2 Positioning Multiple Cameras

The multi-camera setup serves several purposes: matching stones, estimating various size and shape proper-

ties, and building 3D visual hull models of stones for visualisation purposes.

Accuracy can be improved for a given application by increasing the number of cameras in a multi-camera

system. However, for a given number of cameras, it is not obvious how the cameras should be positioned
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so as to obtain the best accuracy. The solution to the problemis somewhat dependent on the measure of

accuracy, the specific application, and the sizes and shapesof the particles.

The multi-camera setup was built with six cameras positioned so that each camera looks onto one of the six

parallel face pairs of a regular dodecahedron. Figure 5.1 illustrates the setup. Each camera is approximately

Figure 5.1: The configuration of the six-camera setup used in this thesis.

500 mm from the centre of the dodecahedron. Since particles tend to be imaged close to the centre of

the dodecahedron, and are approximately 5 mm in diameter, the setup provides weak perspective imaging

conditions: particles are close to the optical axes of all cameras, and particle depth variation is small with

respect to the distances to the cameras.

The number of cameras was limited by monetary cost and hardware limitations. Six was also considered

to be a more favourable number of cameras than five or seven, since a symmetrical configuration could be

realised. The remainder of this section gives some justification to the choice of camera configuration.

5.2.1 Undesirability of Coplanar Cameras

Although the problem of determining the best next view for shape-from-silhouette modelling has been con-

sidered before [12, 114], the problem of optimally positioning a number of fixed cameras for shape-from-

silhouette applications has received little attention in the computer vision literature.

Mundermann et al. [98] address the problem in the context of building visual hull models of humans. They

find that cameras positioned in a geodesic dome configuration(i.e., well-distributed over a hemisphere), and

cameras positioned in a circular coplanar configuration around the object produce the best results.

Other than Mundermann et al.’s findings that a circular coplanar configuration is desirable for at least certain

applications, a coplanar configuration is worth considering since it simplifies the manufacture and assembly

of the structure that houses the cameras.

Figure 5.2 illustrates why a circular configuration (cameras with coplanar optical axes) is undesirable for

estimating 3D shapes of certain nonconvex particles from silhouette sets. In the first row of the figure, the
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(a) particle and cameras (b) visual cones (c) visual hull

(d) particle and cameras (e) visual cones (f) visual hull

Figure 5.2: Six cameras observing a banana-shaped particle: (a)–(c) show cameras with coplanar optical axes, (d)–(f) show cameras
based on a Platonic solid geometry. Note that the coplanar cameras yield a visual hull model that is much larger than the particle:
the extra volume is due to the saddle-shaped region of the particle. The cameras based on a Platonic solid geometry yield avisual
hull model that is a relatively close approximation to the particle.

cameras are positioned so that their optical axes are coplanar, with an even angular distribution about 180◦.

The visual hull model (Figure 5.2c) is a poor approximation to the banana-shaped particle (Figure 5.2a), since

there is additional volume in the saddle-shaped region. This camera configuration would perform poorly at

visual hull-based volume estimation, since for nonconvex particles the volume estimate would be highly

dependent on the orientation of the particle with respect tothe cameras. The circular camera configuration

is desirable for building visual hull models of humans (the application of Mundermann et al.), since humans

are not arbitrarily oriented with respect to the cameras.

Section 7.5.5 provides some further results that demonstrate the undesirability of coplanar cameras in the

context of matching pairs of silhouette sets: mismatch pairs cannot be distinguished from match pairs for a

range of particle orientations.

5.2.2 Positioning Cameras by Optimising Objective Functions

The camera configuration for the work presented in this thesis was determined by optimising an objective

function. Two approaches were considered: (1) maximising the sum of distances between frontier points on a

sphere, and (2) minimising the angle between the most isolated direction and its closest viewing direction. In
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other words, two different criteria were considered for positioning the cameras. Thefrontier point criterion

specifies that the cameras should be positioned so that the sum of distances between frontier points on a

sphere is maximal. Thedirection isolation criterionspecifies that the direction that is furthest (in terms of

angle) from any of the viewing directions is minimal.

Representation for Cameras

The pose of a camera has six degrees of freedom. However, the orientation of the camera does not affect the

information contained in a silhouette: rotating the cameraabout its centre does not alter the rays that pass

through the centre. Furthermore, since the viewed particles are small with respect to the variation in particle

position and the working distance of the cameras, it may be assumed that the distance from the cameras to

the particles is many times greater than the size of the particles. This means that the positional component of

each camera along its optical axis is almost inconsequential from an informational point of view. For these

reasons, the positioning of each additional camera with respect to a fixed first camera can be considered to

introduce only two additional degrees of freedom. For simplicity, cameras are considered to be directions

specified by points on a sphere and an orthographic imaging model is used.

Camera positions are over-parameterised by using three coordinates to specify the position of each of the

cameras on the viewing sphere (two degrees of freedom). The over-parameterisation prevents the occurrence

of singularities and allows for a smooth function to aid the optimisation process.

The Frontier Point Criterion

The objective function to be maximised for the frontier point criterion is the sum of distances between

frontier points on a sphere viewed by orthographic cameras.Each possible pairing of two cameras yields

two frontier points on the viewed sphere: ifn cameras are used, then there aren(n− 1) frontier points. A

sphere is used instead of any other shape for reasons of symmetry and simplicity. In practice, particles being

viewed by the cameras can be assumed to be arbitrarily oriented: a sphere does not introduce any directional

bias. Maximisation of the objective function ensures that frontier points are well-distributed over the surface

of the viewed object.

Since frontier points are well-distributed on a sphere, they are also well-distributed on the particle. (The

frontier points that lie on the saddle-shaped region project to epipolar tangencies that are notouterepipolar

tangencies, since the epipolar tangencies lie on concave boundaries of the silhouettes.) Frontier points lie

both on the particle and on the visual hull, so regions close to the frontier points are accurately modelled

by the visual hull (provided that there aren’t sudden changes in the local surface geometry). A camera

configuration that causes frontier points to be well-distributed over the object is therefore likely to provide

a visual hull model that accurately approximates the particle over all regions of the particle’s surface. This

reduces the likelihood of certain regions being poorly modelled and ensures reasonable performance for
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applications such as volume estimation and shape analysis in which the visual hull is used as an estimate of

the shape of the particle.

The Direction Isolation Criterion

An alternative approach is to minimise the most isolated unused viewing direction. By limiting the maximum

difference in direction between unobserved views of an object and the observed views, the probability of not

observing a saddle-shaped region of the object’s surface, for instance, is reduced.

The most isolated direction is determined using a sphericalVoronoi diagram. The Voronoi diagram is a

division of the surface of a sphere into cells, based on the positions of a set ofsitepoints on the sphere. Each

cell surrounds exactly one site point so that each point within the cell is closer to the site point contained in

the cell than to any other site point. Each viewing directionis specified by a pair of antipodal points on the

viewing sphere: these are the site points.

To determine the most isolated point from a set of site pointson a sphere of any dimension, only the vertices

of the Voronoi diagram need be considered, since for any non-vertex point there will be a Voronoi vertex point

that is more isolated. The most isolated camera direction istherefore computed, for a given set of viewing

directions, by finding the Voronoi vertex whose closest sitepoint is further than for any other Voronoi vertex.

Spherical Voronoi diagrams can be easily computed for spheres in any dimension. The procedure is illus-

trated in Figure 5.3. Tangent planes at site points must be considered. The intersections of the halfspaces

specified by the tangent planes is a convex polyhedron. The halfspace intersection can be formed by com-

puting the convex hull in dual space, i.e., by treating the homogeneous representation of the tangent planes

as points. The dual of the dual space polyhedron is the required polyhedron (Figure 5.3b). The Voronoi

diagram is formed by projecting the polyhedron vertices onto the sphere (Figure 5.3c). The connectivity of

the diagram is given by the connectivity of the polyhedron. This method of computing Voronoi diagrams

using convex hulls in a higher dimension was introduced by Brown [19].

5.2.3 Configuration Optimisation Results

Both objective functions were optimised using Matlab’s Nelder-Mead simplex method [28]. Starting points

for camera positions on a sphere were chosen by randomly selecting points from a subdivided icosahedron.

Four subdivisions of the icosahedron were performed to obtain 812 points that are well-distributed on a

sphere. The objective function was evaluated for 1000 different randomly selected point sets, and the best

of these point sets was used as a starting point for an optimisation. This procedure was repeated 1000 times,

and the best result was selected. Multiple applications of this approach produced the same sets of relative

camera positions. Figure 5.4 illustrates camera configurations optimised with the direction isolation criterion

and with the frontier point criterion. Antipodal pairs of points on the unit sphere indicate camera directions,
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(a) (b) (c)

Figure 5.3: Procedure for computing the Voronoi diagram on a sphere: (a) a sphere with some site points in colour, (b) a polyhedron
formed by intersecting all halfspaces defined by tangent planes to the site points, (c) the Voronoi diagram formed by projecting the
polyhedron vertices onto the sphere; the connectivity of the diagram is given by the connectivity of the polyhedron. Surface regions
on the Voronoi diagram are coloured according to the nearestsite point.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Camera configurations with camera directions representedby spheres of the same colour: (a) optimal 3-camera di-
rections for both direction isolation and frontier point criteria, (b) optimal 4-camera directions for direction isolation criterion, (c)
optimal 4-camera directions for the frontier point criterion, (d) optimal 6-camera directions for both direction isolation and frontier
point criteria, (e) optimal 10-camera directions for direction isolation criterion, (f) optimal 10-camera directions for frontier point
criterion.
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and regions on the sphere are coloured to correspond to the closest camera direction. For certain numbers of

cameras, the two camera positioning criteria produce different configurations, whereas for other numbers of

cameras, one configuration is optimal for both criteria.

Notably, the direction isolation and frontier point criteria both produce the same configuration for six cameras

(see Figure 5.4d). This configuration was therefore chosen for the six-camera setup used in this thesis.

In the case of the frontier point criterion, 3-, 4-, 6-, and 10-camera setups correspond to the directions

specified by the face normals of the Platonic solids. (The regular tetrahedron and the regular octahedron both

correspond to the same 4-camera setup.) In the case of the direction isolation criterion, the 3- and 6-camera

setups correspond to Platonic solids, whereas the 4- and 10-camera setups do not.

Camera configurations optimised using the frontier point criterion are illustrated in Figure 5.5. The corre-

sponding frontier points on a sphere are shown in Figure 5.6.

Although only the six-camera setup was physically realised, the camera configurations consisting of different

numbers of cameras are used in this thesis for several experiments using synthetically generated data. This

enables investigation of the performance of various algorithms with different camera configurations.

The best configuration of the two-mirror setup was also determined by the optimisation using the direction

isolation criterion. It is a symmetrical setup with 72◦ between the mirrors and the camera tilted at 42.0◦.

This produces a most isolated direction that is 48.0◦ from the closest viewing direction. This is only 2.1◦

larger than the optimal most isolated direction that can be achieved from any five viewing directions.

5.3 Camera Calibration

Multi-view, silhouette-based particle analysis applications such as particle size and shape analysis, and in-

dividual particle recognition require accurate camera calibration. The internal and pose parameters of each

camera in a multi-camera setup must be estimated so that the 3D ray corresponding to any 2D image location

is known in a common reference frame.

In earlier work [45], a calibration method was developed using a calibration object with coded marker pat-

terns. Figure 5.7 shows two examples of the calibration objects with coded marker patterns. The circular

markers are identified by their code bands, and the camera internal and pose parameters are inferred from

the positions of the imaged markers across multiple images.

Here, a different approach to calibration is described. A sphere (typically a ball bearing) is passed through

the multi-camera setup several times, and several image sets are captured. Pose and internal parameters are

then inferred from the images of the ball. This approach of using ball bearings to calibrate the multi-camera

setup has several advantages over using a calibration object with coded targets:
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(a) 3 cameras (b) 4 cameras (c) 5 cameras

(d) 6 cameras (e) 7 cameras (f) 8 cameras

(g) 9 cameras (h) 10 cameras

Figure 5.5: Camera setups optimised with the frontier point criterion. Then cameras (green) are shown together with the 2n-faced
polyhedra representing each camera configuration. The polyhedra are shown as a casing on which the cameras are mounted and as
a positioning aid at the centre of the casing, with the cameras looking onto the parallel face pairs. The setup in (a) is based on the
geometry of a cube; this is the configuration used by the University of Illinois Aggregate Image Analyser [108]. The six-camera
setup used in this thesis is configured as in (d). Note that (a), (b), (d), and (h) show Platonic solids.
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(a) 3 cameras (b) 4 cameras (c) 5 cameras

(d) 6 cameras (e) 7 cameras (f) 8 cameras

(g) 9 cameras (h) 10 cameras

Figure 5.6: Positions of frontier points on a sphere for camera setups optimised with the frontier point criterion. The images
correspond to the images shown in Figure 5.5.
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(a) (b)

Figure 5.7: Two examples of calibration objects with coded targets: (a) a cube with 54 targets and 9-bit code bands, (b) an
icosahedron with 60 targets and 10-bit code bands.

1. Unlike calibration using coded marker patterns, calibration using balls makes use of silhouette images.

This means that there is no need for front lights to illuminate object surfaces. Ball calibration therefore

has the potential to reduce the complexity of a multi-camerasetup by removing the need for two sets

of lights; only the back lights that are already required forcreating silhouette images of particles are

needed.

2. By using objects that fall off the feeder (balls) instead of moving a calibration object in front of the

cameras, the appropriate 3D region is calibrated. Since thecalibration parameters are to be used with

objects that fall off the feeder, appropriate coverage is achieved.

3. Since the shape of the balls is known in advance, the silhouettes boundaries can be robustly detected

from within images: the image of a sphere is a conic section, and can be closely approximated by a

circle in many practical imaging configurations.

4. Unlike calibration objects with coded marker patterns, ball bearings of many sizes are inexpensive and

readily available.

5. Balls can be used to calibrate common fields of view that aretoo small for coded marker patterns to

be used. It is impractical to create a calibration object with coded marker patterns that is much smaller

than an inch in diameter. However, small ball bearings can beused with relative ease.

Camera calibration is carried out by adjusting all camera parameters simultaneously to minimise the ET error

across all observed silhouette sets using the Levenberg-Marquardt method. Although this approach can be

carried out using silhouette sets of stones rather than silhouette sets of a ball, using a ball instead of stones

provides two advantages:
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1. The ball images provide an effective means for computing initial parameter estimates. Without good

initial parameter estimates, Levenberg-Marquardt optimisation may converge to a local minimum that

is far from the global minimum.

2. Minimisation of ET error across all silhouette sets does not determine absolute scale. A ball of known

size provides a convenient means for enforcing absolute scale.

5.3.1 Related Work

Early works on camera calibration (within the field of computer vision), such as Tsai’s method [130], rely on

control points with accurately known 3D coordinates. In the1990s, self-calibration methods were developed

for computing camera parameters from correspondences of points with unknown 3D coordinates. One of

the original self-calibration methods was developed by Tomasi and Kanade [129] for orthographic cameras.

Although the method has been extended in various ways to a perspective camera model [56,115], the method

described in this chapter uses the Tomasi-Kanade method to establish initial camera parameters. This is

because the perspective modelling methods are unstable if the degree of perspective distortion in a scene is

small. By using images of a ball, it is easy to closely approximate multiple point correspondences that would

be observed by orthographic cameras with the same viewing directions as the actual cameras.

Practical methods for calibrating multi-camera setups based on self-calibration point correspondences have

been described in the computer vision literature. For instance, Svoboda et al. [122] calibrate a multi-camera

smart room. Their system consists of four cameras that sharea large common field of view. Point correspon-

dences across multiple views are obtained by having a personmove a laser pointer around the common field

of view.

Following the analysis of the generalisation of the epipolar constraint to include silhouettes [3], there has

been interest in calibrating multi-camera setups using silhouettes. Sinha and Pollefeys [120] make use of

outer epipolar tangents to calibrate a network of cameras using silhouettes. Random sampling is used to

identify consistent corresponding epipolar tangencies touse for computing initial parameter estimates. Since

the six-camera setup considered in this chapter is a highly controlled environment, it is not necessary to

resort to random sampling to estimate initial parameters, since multiple point correspondences can easily be

generated using a ball.

The computer vision literature describes several approaches to calibrating cameras using spheres. Shivaram

and Seetharaman [118] point out that the major axis of an elliptical projection of a sphere always passes

through the principal point. Using this observation, they derive equations for camera poses and internal

parameters, and test their method with synthetic images.

Xu et al. [128,140] show how internal and pose parameters canbe estimated separately using linear methods.

The solution is then globally refined using the Levenberg-Marquardt method.
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Agrawal and Davis [1] describe a method for multi-camera calibration using spheres. They use a dual

space approach and solve the camera parameters using semi-definite programming (an extension of linear

programming where positive semi-definiteness constraintsare used on matrix variables). The method appears

to solve the same problem addressed in this chapter.

These approaches provide alternatives to the approach thatwas used, which was chosen for its relative

simplicity. A possible problem with the above approaches isthat the perspective distortion in individual

images is low: imaged balls appear as circles. This makes it difficult to resolve the relationship between

depth and focal length from individual images. The method that was used is able to resolve these factors by

considering multiple ball images in which the ball positionvaries somewhat. To a good approximation, the

ball projections appear as circles of varying size, allowing depth and focal length to be estimated.

5.3.2 Preprocessing

The calibration routine requires the same ball to be passed through the six-camera setup several times. Usu-

ally approximately 20 image sets are captured. A backgroundimage is also captured for each camera.

The first step of the calibration procedure is to compute threshold values to use for threshold-based seg-

mentation. This is done using Otsu’s method which minimisesthe intra-class variance of pixel intensity

values [105]. Polygonal ball boundaries are extracted fromeach image using the same threshold-based seg-

mentation routine that is to be used for subsequently extracting stone silhouette boundaries. The routine is

described in Appendix A.

A circle is fitted to each ball boundary. First, a linear leastsquares method is used to form an initial solu-

tion. This solution is then refined by minimising the sum-of-squared distances from the polygon vertices

to the circle. The fitted circles are used for determining initial parameter estimates; the original polygonal

boundaries are used for refining the solution.

5.3.3 Initial Parameter Estimate

The initial pose estimates are computed using the Tomasi-Kanade factorisation method. The method de-

termines 3D point locations and camera poses from orthographic projections. To estimate the orthographic

projections of the ball centres from the same viewing directions as the cameras, the radii of circles repre-

senting the imaged ball boundaries are used. By scaling the circles with the image centres as the origins

(i.e., assuming that principal points are at image centres)the scaled circle centres provide a close approxima-

tion to the orthographic projection that would be obtained from the viewing direction. The Tomasi-Kanade

method provides the 3D positions of the ball centres and the camera poses (although camera depths are not

given, since an orthographic projection is unchanged by a change in depth). However, there are always two

consistent solutions. To resolve the ambiguity, the circlediameters are again used. The solution that results
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in the circle diameter decreasing with ball depth is chosen.Orthogonal regression lines are fitted to the ball

depth and circle diameter values to compute the camera depthand focal length values.

Computing Approximate Orthographic Projection Coordinat es

A good approximation of the orthographic projection of the ball’s centre is obtained from the camera’s pro-

jection of the ball. Since the distance from the ball to the camera is large with respect to the ball diameter,

and since wide angle lenses are not used, the ball boundary isa close approximation to a circle. The coordi-

nates of the orthographic projection of the ball centre(xc,yc) are estimated from the extracted circle centre

coordinates(uc,vc) as follows:

xc =
uc−u0

r i
(5.1)

yc =
vc−v0

r i
(5.2)

where(u0,v0) is the estimate of the principal point (the image centre is used) andr i is the radius of the

extracted circle in pixels. These equations produce coordinates that are in units of the ball radius.

Tomasi-Kanade Factorisation

This section briefly describes the Tomasi-Kanade factorisation method. Further details are given by Tomasi

and Kanade [129].

The first step is to move the origin to the centroid of the projected points. This removes the translational

component of the pose, since the projection of the 3D centroid of the 3D points is the 2D centroid of the 2D

point projections.

Next, ameasurement matrix̂W is formed from the translated coordinates:

Ŵ =

























x11 · · · x1m
...

. ..
...

xn1 · · · xnm

y11 · · · y1m
...

. ..
...

yn1 · · · ynm

























(5.3)

The 2n rows ofŴ correspond to then cameras, and themcolumns correspond to them image sets of different

3D ball positions.
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Singular value decomposition is applied toŴ to give

UΣVT = Ŵ. (5.4)

The first three columns ofU are used to form amotion matrixM̂. A shape matrix

Ŝ= Σ3V
T
3 (5.5)

is formed fromΣ3, the first three rows and columns ofΣ, andV3, the first three columns ofV. This results in

the factorisation

Ŵ = M̂Ŝ. (5.6)

The shape matrix and the motion matrix represent the 3D structure and camera poses up to an arbitrary affine

transformation. In other words, any arbitrary affine transform of the 3D structure yields a consistent solution.

The true motion matrixM has rows that are unit vectors, and the corresponding rows inthe upper and lower

halves of the matrix are orthogonal. To enforce these constraints, a matrixA is sought such that

M = M̂A (5.7)

S= A−1Ŝ, (5.8)

andA enforces the metric constraints

iTr AAT ir = 1 (5.9)

jT
r AAT j r = 1 (5.10)

iTr AAT j r = 0, (5.11)

whereiTr is therth row of M and jT
r is the(r + n)th row of M. These constraints are imposed using linear

least squares to determineQ, where

Q = AAT . (5.12)

OnceQ is determined, Cholesky factorisation is used to determineA. (Tomasi and Kanade use nonlinear op-

timisation to determineA directly; the approach of using Cholesky decomposition is described by Weinshall

and Tomasi [134].) If the matrixQ is not positive definite, then Cholesky decomposition cannot be applied.

This will occur if the system becomes completely overwhelmed by noise.

The rotation matrices associated with each camera have rowsiTr , jT
r andkT

r where

kT
r = iTr × jT

r . (5.13)

In the presence of noise, these matrices will not in general be orthonormal. The singular value decomposition

is used to enforce orthogonality: the diagonal matrix in thedecomposition is replaced by the identity matrix.
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Resolving the Reflection Ambiguity

There is an inherent ambiguity in the solution to the camera poses and 3D point positions: two solutions

are consistent with the observed orthographic projections. The two solutions correspond toA and−A both

providing consistent solutions. Figure 5.8 shows an example of two scenes in which both sets of cameras

capture the same orthographic projections. The ambiguity arises because a positive rotation of a point in

front of a centre of rotation cannot be distinguished from a negative rotation of a point behind the centre of

rotation [18].

Figure 5.8: Two consistent setups for a set of observed orthographic point projections. Note that the camera icons represent viewing
directions; the position of the camera parallel to the viewing direction is inconsequential.

To resolve the ambiguity, each of the two possible solutionsis considered in turn. For each camera, the

imaged circle radius should be inversely proportional to the associated depth, since for a weak perspective

projection

r i =
f rw

z
, (5.14)

where f is the focal length,rw is the ball radius, andz is the depth. World coordinates are measured in terms

of rw, thereforerw = 1. Camera depths are unknown at this stage and are set to zero.

The correlation coefficient of the radius inverses and the depths are computed for each camera. The solution

that produces the largest positive correlation coefficientis selected. (In the noise-free case, the true solution

will produce correlation coefficients of+1 and the incorrect solution will produce correlation coefficients of

−1.)
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Estimating Focal Length and Depth Values

The depth of the cameras and the focal lengths are computed byfitting an orthogonal regression line to the

radii inverses and depth values (with all cameras initiallypositioned atz= 0).

The slope of the regression line gives the focal length and the negative of the intercept is the camera depth.

5.3.4 Parameter Refinement

The initial parameter estimate is refined by using the Levenberg-Marquardt method to adjust all calibration

parameters to minimise the sum of residual ET errors across all silhouette sets.

Since each camera pair generates two outer frontier points,each of which is imaged by each camera, each

camera pair generates four residual ET error values. The 15 camera pairings from six cameras therefore

generate 60 residual ET error values per image sets; there are 60k residual values fork image sets. The

calibration parameters for each camera consist of 10 parameters per camera: three for the internal parameters

( f , u0, andv0), and seven pose parameters (a quaternion to represent orientation, and a three element vector

to represent position). (The four element quaternion overparameterises the orientation which has only three

degrees of freedom.) In total, 60 calibration parameters are therefore adjusted to minimise the sum of square

residual error over 60k residual values. Note that further parameters that model, for instance, radial or

tangential lens distortion could be added at this stage (with initial values of zero). However, the lenses

used did not exhibit significant distortion, and initial experimentation showed no benefit in including lens

distortion terms.

Since six cameras are used and pixels are modelled as squares, there are sufficient constraints to calibrate

up to only a single unknown scale factor [58]. (Fewer camerasor unknown pixel skew and aspect ratios can

lead to cases in which calibration can only be carried out to aprojective transform.)

Scale is enforced subsequent to the Levenberg-Marquardt minimisation using the prior knowledge of the ball

diameter. Linear Euclidean triangulation [58] is used to determine the 3D position of the ball centre from

the circle centres of the images in each set. The ball diameter dworld implied by the model is then estimated

from each image using

dworld =
z
f
dimage, (5.15)

wheredimageis the diameter of the circle in the image,z is thez-coordinate of the ball position in the camera’s

reference frame (i.e., the depth) andf is the camera focal length in pixels. This is a weak perspective

approximation that assumes that the rim (i.e., the contour generator that projects to the ball boundary in the

image) is at the same depth as the ball centre. This is a good approximation since the ball diameter is small

with respect to the distance to the camera centre. Camera positions are scaled to enforce absolute scale so

that the mean computed ball diameter is equal to the known value.
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5.3.5 Experiments

The calibration method was tested using 20 image sets of a 5.54 mm ball bearing. Figure 5.9 shows a six

image set of a garnet, with projected epipolar tangents derived using the computed calibration parameters.

The accuracy of the computed calibration parameters affects how close the projected tangents are to being

tangential to the silhouettes: in the noise-free case the epipolar tangency constraint specifies that the projected

tangents are tangent to the silhouettes.

Figure 5.9: An example of a six-image set of a garnet. The epipolar tangents from each image are projected onto the remaining
five images. The projected epipolar tangents are ideally tangent to the silhouettes; for real data that is not noise-freethey are almost
tangential.

To quantify the accuracy of the proposed calibration routine and to investigate how calibration accuracy

varies with the number of ball image sets used, calibration was applied using randomly selected subsets of

the ball image sets. The accuracy of the calibration was thenquantified by using the computed calibration

parameters to calculate the RMS ET error computed over 100 silhouette sets of garnets. Results are presented

in a plot in Figure 5.10. The plot indicates that RMS ET errorsof less than 0.4 pixels can be achieved if a

sufficient number of ball image sets is used for calibration.The results also demonstrate that the parameter

refinement by minimising ET error improves the accuracy of calibration parameters. The improvement is

largest when a small number of balls is used, but is still significant when 15 ball image sets are used.

Calibration based on six ball sets was compared with calibration using 30 image sets of a calibration ob-

ject [45]. The calibration object is illustrated in Figure 5.7b. During the calibration procedure, 2996 control

points were located across the 30×6 = 180 input images. Silhouette sets of 98 uncut gemstones wereused

as a test set. ET errors for the 98 silhouette sets are plottedin Figure 5.11. Similar accuracy is observed for

the ball-based calibration parameters and the calibrationobject parameters with RMS ET error values over
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Figure 5.10: RMS ET error computed over a test set of 100 six-view silhouette sets of garnets using different calibration parameters.
Each data point corresponds to the RMS ET error over 100 silhouette sets. Calibration parameters were determined from ball image
sets randomly selected from 20 available image sets.
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Figure 5.11: Internal ET error for 98 uncut gemstones computed using initial parameter estimates, optimised parameter estimates,
and parameters computed using a calibration object.

96



all 98 silhouette sets of 0.667 pixels and 0.671 respectively. The initial parameter estimates produced an

RMS ET error of 2.18 pixels over the 98 silhouette sets.

The ET error computed on a test set of stones provides no indication of the accuracy of scale enforcement,

because the ET error is invariant to the absolute scale enforced. To quantify the performance of scale en-

forcement, it is necessary to image objects of known size. Image sets of three different sized balls were used

to determine the accuracy of scale enforcement.

Table 5.1 shows the results of using the image sets of one ballfor calibration, and then estimating the ball

diameters of all three balls using the computed calibrationparameters with scale enforced using the known

diameter of the calibration ball. The diagonal of the table shows ball diameters that are exact, as the same

ball image sets are used for calibration and for testing in these cases. The table indicates that the typical

difference between estimated ball diameters the ground truth values is approximately 10 microns.

5.54 mm 8.73 mm 10.50 mm
ball ball ball

5.54 mm 5.540 mm 8.741 mm 10.502 mm
calibration (0.007 mm) (0.021 mm) (0.013 mm)
parameters 0% +0.126% +0.019%
8.73 mm 5.527 mm 8.730 mm 10.488 mm

calibration (0.011 mm) (0.028 mm) (0.018 mm)
parameters -0.237% 0% +0.114%
10.50 mm 5.531 mm 8.738 mm 10.500 mm
calibration (0.011 mm) (0.029 mm) (0.017 mm)
parameters -0.162% +0.091% 0%

Table 5.1: Mean estimated ball diameters (with standard deviation over all image sets considered in brackets) for balls computed
with calibration parameters determined from different sized balls. Percentage errors are shown in bold face. Nine image sets were
used for the 5.54 mm ball; nine image sets were used for the 8.73 mm ball; and seven image sets were used for the 10.50 mm ball.

5.4 Summary

This chapter has described the geometric configuration of the multi-camera setup used for much of the work

described in this thesis, and has presented the ball-based method used to calibrate the cameras.

Although some justification has been given for the choice of objective functions used for optimising the cam-

era configurations, the objective functions are essentially ad hoc. This is the case because the multi-camera

setup is to be used for several different applications whoseperformance can be measured in different ways,

so the goal is to find a configuration that will be desirable forall applications. Two different approaches
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(the frontier point criterion and the direction isolation criterion) yield the same configuration for six cam-

eras. This configuration corresponds to viewing directionsthat are parallel to the face normals of a regular

dodecahedron (one of the five Platonic solids).

Ball-based calibration produces ET errors of less than a pixel for image sets of garnets and gemstones.

Approximately the same ET errors are obtained using a calibration object with coded targets.

The following chapters will quantify the performance that can be achieved for shape property estimation and

matching applications using the camera configuration and calibration method described in this chapter.
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Chapter 6

Merging Silhouette Sets

6.1 Introduction

This chapter describes a simple but effective method for merging two silhouette sets of the same rigid object

into a single large silhouette set where all silhouette poses are specified in a common reference frame. The

single large silhouette set allows a more accurate estimateof the 3D shape of the object to be made than

either of the original silhouette sets.

The same method can be used to merge further silhouette sets of the object in different poses with the merged

silhouette set. This allows an arbitrary number of silhouette sets of an object to be merged into a single large

silhouette set.

The problem addressed in this chapter is another silhouette-based self-calibration problem. Here, it is the

external camera parameters (i.e., pose parameters) ratherthan internal camera parameters that must be

estimated. The approach taken here is the same as for the self-calibration problems addressed in Chap-

ters 4 and 5: use the problem-specific constraints to obtain initial parameter estimates, and then refine the

parameter estimates by minimising the ET error across silhouette pairs. The unknown parameters that are to

be inferred from the two silhouette sets describe the relative pose between the two silhouette sets.

To obtain an initial estimate of the relative pose, the approximate 3D shape of the corresponding stone is

estimated separately from each silhouette set. This can be done using the visual hull, or the VEMH as

an estimate of 3D stone shape. The moments of the 3D shape are then used to estimate the components

of relative pose between the silhouette sets. Centroids areused to estimate relative translation, principal

directions are used to estimate relative orientation, and third order moments are used to resolve the four-way

alignment ambiguity (since pairs of principal axes can be aligned in four ways).

This approach will be shown to work in most (but not all) casesfor the silhouette sets of stones considered

in this work. The method fails in cases in which third order moments do not resolve the four-way alignment
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ambiguity of the principal axes, and in cases in which the principal axes of 3D approximations of the stone

provide a poor estimate of the relative orientation betweensilhouette set pairs. In these failed cases, the

initial parameter estimate does not lie within the basin of convergence of the optimal alignment parameters,

and a local minimum that lies far from the optimal solution islocated by Levenberg-Marquardt minimisation.

To address this issue, pose optimisation is attempted from successive different starting points based on dif-

ferent initial pose estimates, and the pose estimate corresponding to the lowest ET error (i.e., the smallest

degree of silhouette inconsistency across the two silhouette sets) is selected. Initial pose estimates may be

based on all four alignments of pairs of principal axes, and on random sampling of orientation space.

A version of the work described in this chapter was presentedas a conference paper [46].

6.2 Related Work

One of the earlier methods to create refined visual hull models by making use of two or more silhouette

sets of an object is described by Wingbermühle et al. [137].The relative pose between silhouette sets is

determined by means of an optimisation procedure. The cost function is the mean squared distance between

surface points of the first visual hull and the closest surface points of the second visual hull. A starting point

for the optimisation is determined from the principal axes and centres of gravity (centroids) of the two visual

hulls. If the cost associated with the starting point is too high, then a heuristic approach is used: the relative

rotation is adjusted incrementally about each of the principal axes in steps of 15◦ until an adequate starting

point is found. Since the cost function is based on the visualhull rather than the observed silhouettes, there

is no reason to expect that the correct alignment should correspond to a cost function minimum, even with

exact silhouette sets.

Cheung et al. [26, 27] describe a method for determining rigid transforms for aligning image sets of the

same object in different poses. Although their goal is the same as for the method described in this chapter,

they make use of colour stereo matching in addition to silhouette information, whereas in this thesis only

silhouette images are considered. Their method involves using silhouettes to constrain the search for cor-

responding points along viewing edges (which they termbounding edges). Pose parameters are iteratively

adjusted to minimise a cost function based on colour consistency across image sets. Their setup therefore

requires objects and lighting such that (1) both silhouettes and foreground texture can be reliably measured

from images, and (2) colour and intensity varies as little aspossible with viewpoint (i.e., a Lambertian model

must be a good approximation). This thesis takes a differentapproach, and lighting is set up to obtain the

best possible silhouettes at the cost of discarding foreground texture.

Cheung’s motivation for using colour information in addition to silhouettes is that alignment using silhouettes

is ‘inherently ambiguous’ [26]. To demonstrate the ambiguity, it is shown that more than one alignment of

certain specific noise-free silhouette set pairs is exactlyconsistent.
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Despite Cheung’s illustration of certain specific ambiguous cases, the view taken here is that there is no

need to discard the possibility of alignment based on silhouettes alone. Although certain specific cases are

inherently ambiguous, they are unlikely to occur in practice. This is especially so with arbitrarily oriented

natural objects such as stones, for which an ambiguous pair of silhouette sets arising by coincidental align-

ment appears to be close to impossible. Of course, real silhouette sets are noisy and are therefore inexact; it

is certainly plausible that attempting to align silhouettesets consisting of too few views or too much noise

may fail. This chapter will demonstrate that merged silhouette sets captured using the imaging setups con-

sidered in this work are sufficiently accurate to provide measurable improvement in estimates of size and

shape properties that are of interest to particle shape analysts.

Subsequent to our initial publication [46] of the method described in this chapter, Hernández [39] describes

a solution to the same problem in the context of creating refined visual hull models of museum pieces such

as ornamental pitchers. Calibrated sequences of silhouettes are captured using a turntable; this provides a

silhouette set of the object. The object is then reoriented on the turntable and another silhouette set is cap-

tured. The method of merging the silhouette sets is essentially the same as the approach described here: pose

and scale parameters are adjusted to optimise a measure of silhouette consistency. Instead of using ET error,

Hernández proposes an alternative measure of silhouette consistency that he termssilhouette coherence. Sil-

houette coherence measures the extent to which visual hull projections match the corresponding silhouettes.

This has the advantage of using more information contained within the silhouettes than the ET error, but

comes at the cost of having a discretised nature, and requires selecting the value of a tunable distance offset

parameter. Results demonstrate that the visual hull model formed from the merged silhouette set is a better

approximation to the shape of the object than visual hulls formed from either of the original silhouette sets.

Wong [138] describes merging individual silhouettes with silhouette sets. Since individual silhouettes are

used, approximate 3D models cannot be used to provide initial pose estimates, and initial pose estimates

must be provided by the user. The pose estimate is then refinedby minimising ET error.

6.3 Moments for Initial Parameter Estimates

A triangular mesh model that approximates the 3D shape of thecorresponding stone is computed for each

silhouette set. This is done using the visual hull or VEMH described in Chapter 3. The moments of the mesh

models are used to form initial parameter estimates for aligning silhouette sets of the same object.

6.3.1 Computing Moments from Triangular Meshes

The moments of the solid enclosed by a triangular mesh can be elegantly computed by visiting each triangle

and forming a polynomial function of the vertex coordinate values. The basis for the method is described by

Lien and Kajiya [81], and Zhang and Chen [143] derive explicit equations for third order moments. Mirtich
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[94] describes an alternative approach in which the Divergence Theorem is used to reduce volume integrals

to surface integrals. Zhang and Chen’s equations are presented in this section.

The moments of the solid enclosed by a mesh are defined as

Mpqr =

∫∫∫

xpyqzrρ(x,y,z)dxdydz, (6.1)

whereρ(x,y,z) = 1 for points inside the mesh, andρ(x,y,z) = 0 for points outside the mesh.

The moment equations depend on a determinantT that must be computed for each triangular face:

T = x1(y2z3−y3z2)+y1(x3z2−x2z3)+z1(x2y3−x3y2). (6.2)

For convenience, the equations derived by Zhang and Chen arerestated here (using a slightly different format

for clarity):

M000 = 1/6∑T (6.3)

M100 = 1/24∑T(x1 +x2 +x3) (6.4)

M110 = 1/120∑T(2x1y1 +2x2y2 +2x3y3 +x1y2 +x2y1 +x2y3 +x3y2 +x3y1 +x1y3) (6.5)

M200 = 1/60∑T(x2
1 +x2

2 +x2
3 +x1x2 +x2x3 +x1x3) (6.6)

M300 = 1/120∑T(x3
1 +x3

2 +x3
3+x2

1(x2 +x3)+x2
2(x1 +x3)+x2

3(x1 +x2)+x1x2x3). (6.7)

The summation sign indicates summation over all triangles that make up the mesh. The triangle vertices

are (x1,y1,z1), (x2,y2,z2) and (x3,y3,z3). Since triangles share vertices with other triangles, vertices will

be visited on multiple occasions. The equations for the other relevant moments can be inferred from the

equations given above.

To determine an initial estimate of the relative pose between two silhouette sets A and B, the centroid and

principal axes are computed for each of the two meshes that are 3D approximations to the stone computed

from each silhouette set. For each mesh, a 4×4 rigid transform matrixM that aligns the principal axes of

the mesh with thex-, y-, andz-axes is computed:

M =

(

R3R2 −c

0T 1

)

, (6.8)

wherec is the centroid of the solid enclosed by the mesh,R2 is a rotation matrix that aligns the principal

axes, andR3 is a rotation matrix that is used to resolve the four-way alignment ambiguity.

Once rigid transform matricesMA andMB have been computed for the two silhouette sets A and B, the initial
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pose estimateMinit to transform from B’s world reference frame to A’s world reference frame is computed:

Minit = M
−1
A MB. (6.9)

To computeM, the following steps are applied to each mesh. First, the mesh is translated so that its centroid

c lies on the origin. The centroid is calculated as

c =







M100

M010

M001






/M000, (6.10)

whereM000 is the volume bounded by the mesh.

Next, a 3×3 matrix of second order moments (a covariance matrix) is constructed:

S=







M200 M110 M101

M110 M020 M011

M101 M011 M002






. (6.11)

The columnwise eigenvectorse1, e2, e3 of this matrix are used to form a rotation matrixR2 = [e1 e2 e3]. The

mesh vertices are then multiplied byR
−1
2 to align the principal axes of the mesh with thex-, y- andz-axes.

This is done so that the third order moments can be computed.

The two third order momentsM003 andM030 are computed to resolve the four-way alignment ambiguity.

(This arises becausee and−e are both valid eigenvectors.) The value ofR3 is determined from the signs of

M003 andM030 as indicated in Table 6.1.

M003 > 0 M030 > 0 R3

no no 180◦ rotation aboutx-axis
no yes 180◦ rotation abouty-axis

yes no 180◦ rotation aboutz-axis
yes yes 3×3 identity matrix

Table 6.1: SelectingR3 based on the signs of the third order momentsM003 andM030.

This ensures that the composite rotationR3R2 aligns the original mesh so thatM003 > 0 andM030 > 0.

In certain cases, theM003 andM030 values of the visual hull or the VEMH may not match the sign of the

M003 andM030 values of the stone. This is particularly likely to occur when the skewness of the volume

distribution along a particular principal axis is close to zero. These cases may result in silhouette set pairs

being out of alignment by 180◦. In order to find the next most likely alignments, a rotation of 180◦ about

thez- or y-axes can be used. These produce alignments in which the signs of eitherM003 or M030 will differ
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for a pair of visual hulls or VEMHs (though the values for the stone may share the same sign). To obtain

the fourth alignment in which the values of neitherM003 nor M030 share the same sign across the two mesh

approximations, a 180◦ rotation about thex-axis is used (i.e., a 180◦ rotation about they-axis followed by a

180◦ rotation about thez-axis).

6.3.2 Experiments Using Moment-Based Initial Estimates

Synthetic Data

Experiments on synthetic data were carried out to investigate the performance of moment-based estimates of

initial pose. Synthetic data has the advantage of having exactly known ground truth values for pose.

Refined visual hull models formed from a data set of garnets were used to create synthetic silhouette images.

The data set is illustrated on page 221 of Appendix C.

Exact polygonal silhouettes that were generated from projections of the mesh models were rasterised to cre-

ate synthetic digital images, and polygonal boundaries were extracted using a subpixel segmentation method

that is described in Appendix A. The resultant digital images were downsampled to create sets of images

at different resolution levels (see Figure 6.1). Syntheticdata were generated for different configurations of

(a) 1/4 resolution (b) 1/8 resolution (c) 1/16 resolution (d) 1/32 resolution

Figure 6.1: An example of a synthetic silhouette shown at four different resolution levels.

different numbers of cameras: 2-, 3-, 4-, 6-, and 10-camera configurations were investigated. The configura-

tions are based on the Platonic solids as illustrated in Figure 5.5. The synthetic 6-camera setup corresponds

to the configuration of the real 6-camera setup. Two runs of silhouette sets were synthesised for each case.

In each case the stone models were oriented using a uniform random rotation, and were positioned with their

centroids at the intersection of optical axes. Camera depths were based on the depths of the six real cameras

from the stones.

Pose optimisation was carried out using the Levenberg-Marquardt method. The orientational component of

pose was parameterised using quaternions. This eliminatespotential gimbal lock problems at the cost of

104



an extra parameter: the relative pose is parameterised withseven parameters, but has only six degrees of

freedom.

The ET error is computedacrossthe two silhouette sets. This means that each silhouette pair in the first set

is paired with each silhouette in the second set.

Figure 6.2 shows empirical CDFs (cumulative distribution functions) for the angle between the computed

relative pose and the ground truth relative pose. The angle provides a useful single-number measurement of

the dissimilarity between two poses. This approach comes atthe cost of discarding the positional component

of pose. At this stage, it is useful to consider the angle for investigating the behaviour of the proposed

pose optimisation method. Later in this chapter, practicalapplication-based methods of accuracy will be

considered too.

The figure shows CDFs for the initial pose estimates (‘init’)as well as optimised pose estimates (‘opt’) for

initial estimates based on the moments of both the visual hull (‘VH’) and the VEMH. Results are shown for a

6-camera setup and experiments are repeated at different levels of image resolution. A nonlinear scale (based

on a sinusoidal transformation) is used for the horizontal axis. This aids visualisation, because interesting

portions of the CDFs occur near 0◦ and 180◦, whereas the CDFs tend to have almost constant value between

45◦ and 135◦. Also shown on each plot is the CDF corresponding to a uniformrandom orientation. The

plots on left side show the results of optimisations based ona single initial pose estimate in which third order

moments are used to resolve the four-way alignment ambiguity of the principal axes. The plots on the right

side show the results of pose optimisation in which four initial pose estimates based on the four alignments

of the principal axes are considered. The computed pose withthe lowest ET error is selected.

The CDFs allow one to read off the proportion of cases where estimated poses are within a certain angular

displacement from the true pose. The plots on the left suggest that in approximately 80% of cases, optimisa-

tion based on a single initial pose estimate leads to a pose within two degrees of the true pose. The closeness

to the true pose improves with higher resolution silhouettes. The plots on the right show that approximately

98% of cases lead to a pose within two degrees of the correct pose when all four alignments of the principal

axes are considered. Although a threshold of two degrees is arbitrary, the horizontal sections of the CDFs

suggest that there is a large range of threshold angles for which these proportions are insensitive.

The plots indicate that the VEMH slightly outperforms the visual hull for alignments based on third or-

der moments, but performance is approximately the same whenconsidering four initial estimates per case.

This suggests that the VEMH provides a better estimate of theskewness of the volume distribution of the

corresponding stone than the visual hull.

The results of experiments repeated with different numbersof cameras is shown in Figure 6.3. The plots

indicate that as the number of cameras is increased, the proportion of estimated poses that are close to the

true pose increases.

Figures 6.4 and 6.5 show plots of normalised ET error versus angle from the true alignment for the experi-

ments whose results are displayed in Figures 6.2 and 6.3 respectively. Normalised ET error is the RMS ET
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(b) 1/32 resolution
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(c) 1/16 resolution
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(d) 1/16 resolution
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(e) 1/8 resolution
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(f) 1/8 resolution
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(g) 1/4 resolution
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(h) 1/4 resolution

Figure 6.2: CDFs of angle between computed pose and ground truth pose for merging 6-view silhouette sets.The left column shows
results based on a single initial pose estimate based on moments up to order three. The right column shows results based onthe best
(lowest ET error) of four initial pose estimates from the four possible alignments of principal axes.
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(a) 2 cameras
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(b) 2 cameras
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(c) 3 cameras
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(d) 3 cameras
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(e) 4 cameras
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(g) 10 cameras

0 1 2 5 10 20 40 90 140 160 170 177 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle From True Orientation [degrees]

C
um

ul
at

iv
e 

F
re

qu
en

cy

 

 

uniform random rotation
init VH
init VEMH
opt VH
opt VEMH
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Figure 6.3: CDFs of angle between computed pose and ground truth pose for silhouettes sets formed with different numbers of
cameras at1/4 resolution.The left column shows results based on a single initial pose estimate based on moments up to order three.
The right column shows results based on the best (lowest ET error) of four initial pose estimates from the four possible alignments
of principal axes.
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(a) 1/4 resolution
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(b) 1/8 resolution
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(c) 1/16 resolution
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(d) 1/32 resolution

Figure 6.4: Plots of normalised ET error versus angle between computedpose and ground truth pose for the 6-camera setups with
different resolution levels as considered in Figure 6.2.
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(a) 2 cameras

0 12 5 10 20 40 90 140 160 170 177 180

0.25

0.5

1

2

4

8

16

32

N
or

m
al

is
ed

 E
T

 E
rr

or

Angle to True Orientation [degrees]

(b) 3 cameras
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(c) 4 cameras

0 12 5 10 20 40 90 140 160 170 177 180

0.5

1

2

4

8

16

32

64

128

N
or

m
al

is
ed

 E
T

 E
rr

or

Angle to True Orientation [degrees]

(d) 10 cameras

Figure 6.5: Plots of normalised ET error versus angle between computedpose and ground truth pose for the different camera setups
considered in Figure 6.3. The1/4 resolution level is used.

residual error computed across the merged silhouette set pair divided by the RMS ET residual error computed

within each of the two silhouette sets. Since the six degreesof freedom of pose optimisation is small with

respect to the number of different outer epipolar tangent planes (2n2 for n cameras) that generate the residual

errors, the normalised ET should be close to one for correctly aligned silhouette set pairs. The plots show

two distinct clusters that correspond to correct alignment(low ET error and small angle to the true pose) and

incorrect alignment (high ET error and large angle to the true pose). Note that both axes are nonlinear: this

aids visualising the clusters on the bottom left that are substantially more compact than the clusters on the

top right.

In the case of two cameras (Figure 6.5a), two clusters are less distinct than for larger numbers of cameras. In

the case of three cameras (Figure 6.5b), two clusters are clearly visible, yet the bottom left cluster consists

of normalised ET errors less than one. This is evidence of overfitting: the 2×32 = 18 outer tangent planes

that generate ET errors across silhouette set pairs is not much larger than the six degrees of freedom of the

pose optimisation. For larger numbers of cameras, the normalised ET errors tend to cluster around a value

of one for the lower left cluster. The lower left cluster tends to become more compact and move towards an

error angle of zero, as image resolution is increased (Figure 6.4), and as the number of cameras is increased

(Figure 6.5).

The plots in Figures 6.4 and 6.5 indicate that ET errors tend to form two clusters, one of whose alignments

are substantially closer to the true alignment than the other. This supports the use of ET error to investigate

the behaviour of real data.
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Real Stone Images

Pose optimisation using moments for determining initial parameter estimates was applied to the data set of

images of 220 pieces of gravel, and 246 garnet stones. The pieces of gravel were imaged using the two-mirror

setup described in Chapter 4, and the garnets were imaged using the 6-camera setup described in Chapter 5.

Figure 6.6 illustrates the results of pose optimisation applied to two 5-view silhouette sets. Only one of the

two silhouette sets is shown. The five images are cropped out of the original image, since all five silhouettes

were captured in a single image using the two-mirror setup. (There is some overlap present in the second and

fourth images.) In this case, the computed pose appears to beclose to the correct pose, since all the projected

tangents are approximately tangent to the silhouettes. Thefigure also shows projections of the 10-view visual

hull onto the original silhouettes. The visual hull projections come close to covering the original silhouettes.

This is consistent with a pose that is close to the true relative pose.

Figure 6.7 illustrates the results of pose optimisation applied to the same pair of silhouette sets, but from a

different starting point. The initial pose estimate used here causes the principal axes of the two VEMHs to

be aligned, but the third order moments do not have the same signs. In this case, pose optimisation appears

to have found a pose that is far from the true pose. The projected epipolar tangents are not approximately

tangent to the silhouettes (as indicated by red line segments), and the visual hull projections leave large

portions of the silhouettes uncovered. The silhouettes in the bottom row have been coloured using a distance

transform, so that the distance of uncovered portions from the silhouette boundary is apparent.

Figure 6.8 shows CDFs of ET error for the garnet and gravel data sets. Similar behaviour to the experiments

with synthetic data is observed. In approximately 80% of cases, for both the garnet and the gravel data, the

normalised ET error is below 2.0 when optimising pose from a single starting point based on third order

moments. The VEMH curves lie above the visual hull curves forboth data sets, indicating that the VEMH

provides a better starting point. However, the two curves are similar in shape when using four starting

points based on four alignments of principal axes. The plotsalso show results computed using the CDRH to

approximate 3D stone shape. (The CDRH is defined in Section 3.4.2 on page 39.) The poor performance of

the CDRH demonstrates the importance of using varying rim depths as for the VEMH, rather than constant

depth rims. The additional complexity of computing the VEMHrather than the CDRH is therefore justified

in this context.

Qualitative Results for 3D Multimedia Content Creation

The proposed method of merging silhouette sets is useful notonly for characterising stone shape, but also

for reconstructing the 3D shape of arbitrary objects for 3D multimedia content creation. Easily recognisable

shapes help to provide a qualitative demonstration of the effectiveness of the proposed method for creating

more accurate 3D reconstructions than can be made from any ofthe original silhouette sets.
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Figure 6.6: Correct alignment computed using moments up to order threefor an initial pose estimate. The top row shows projected
epipolar tangents within the silhouette set in green, and across silhouette sets in blue. The bottom row shows silhouettes in colour
with 10-view visual hull projections in grey.

Figure 6.7: Incorrect alignment. The top row shows projected epipolartangents within the silhouette set in green, and across
silhouette sets in blue. Distances from the tangents to the silhouette are in red. The bottom row shows silhouettes in colour with
10-view visual hull projections in grey.
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(b) garnets, 4 starting points
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(c) gravel, single starting point
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Figure 6.8: CDFs of normalised ET error computed using real image data.Dashed vertical lines indicate normalised ET error of 1.0.

Figure 6.9 shows an example of visual hulls formed from four 5-view silhouette sets. The images were

captured using a 5-camera setup that was a predecessor to the6-camera setup described in Chapter 5. The

visual hull formed from the merged 20-view silhouette set isalso shown. The merged silhouette set was

obtained by merging the silhouette sets one at a time. A final parameter adjustment of all pose parameters

using ET error computed across all silhouette pairs was found to result in negligible further reduction in ET

error. Notice that the 3D reconstruction of the wingnut fromthe merged silhouette set appears to be more

accurate than any of the original 5-view visual hulls.

Figure 6.10 shows another example, a toy cat, using images captured with a 5-camera setup. Again, the

20-view visual hull formed from the merged silhouette set appears to be a better 3D reconstruction than any

of the original 5-view visual hulls, each of which have substantial regions of extra volume. The figure also

shows the computed positions of the 20 silhouette views as well as the corresponding visual cones. Note

how the viewpoints provide a good coverage of the viewing sphere.
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Figure 6.9: Visual hulls of a wing nut. The top row shows four 5-view visual hulls. The bottommost illustration shows the refined
20-view visual hull obtained by merging the four 5-view silhouette set into a single large set containing 20 silhouettes.

The proposed method provides an alternative means for capturing silhouettes from many well-distributed

viewpoints using the two-mirror setup. In Chapter 4, a method was described in which the camera is moved

with respect to the mirror and object so that a good coverage of the viewing hemisphere can be obtained. The

proposed method provides another approach: the object is moved and the camera and mirrors stay fixed. This

requires a tripod or some other method of fixing the camera with respect to the mirrors. Figure 6.11 shows an

example in which three images of a toy moose are captured using the two-mirror setup. The figure illustrates

once more that a refined visual hull model formed from a mergedsilhouette set is a better reconstruction than

can be formed from any of the original silhouette sets.

An advantage of using the proposed method with the two-mirror setup is that images can be captured over the

entire viewing sphere (as opposed to a viewing hemisphere).This allows 3D reconstructions to incorporate

texture, and also allows foreground information to be incorporated for estimating 3D shape. Figure 6.12

shows an example in which a toy cheetah is modelled. For each object pose, two images are captured: one

with the backlight switched on to facilitate silhouette extraction, and another with no backlight to capture the

foreground texture of the object.

6.4 Estimating Shape Properties

This section describes several experiments that quantify the repeatability and accuracy with which shape

properties can be estimated using the proposed merging method. Readers who are not specifically interested

in shape property estimation may wish to skip this section, and continue reading Section 6.5 on page 128.

To address the problem of initial pose estimates that do not lead to sufficiently low ET error, the best opti-

misation based on 100 starting points formed with uniform random sampling of orientation space was used.

The large number of starting points ensures that a pose closeto the true pose is likely found, but this comes
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.10: Visual hull models of a toy cat: (a)–(d) four models each built from five silhouettes, (e) the model built from the 20
silhouettes used in (a)–(d) after the poses of all silhouettes have been determined in a common reference frame. The camera poses
corresponding to the twenty views are shown in (f), and the visual cones are shown in (g).

Figure 6.11: Reconstructing the 3D shape of a toy moose. The top row showsthe three input images, and the bottom row shows the
corresponding 5-view visual hulls. The rightmost visual hull is formed from the merged 15-view set.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.12: Reconstruction of a toy cheetah by merging five 5-view silhouette sets. Input images were captured using two mirrors
and a backlight: (a) shows an example of a backlit image and (b) shows an example of the corresponding frontlit image. After
calibration and pose optimisation using silhouettes extracted from the backlit images, the frontlit images were used to build a photo-
consistent three-dimensional model. This was done with software created by Mathew Price (University of Cape Town) thatis based
on the work of Vogiatzis et al. [132]. The software uses optimisation based on graph-cuts to compute a textured photo-consistent
mesh. Two novel views of the three-dimensional model with and without texture are shown in (c)–(f).
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at the cost of increased running time. In Chapter 9, where thepose optimisation is used for matching, a

framework is introduced that removes the need for specifying the number of starting points in advance.

To be useful in the context of particle shape analysis, the proposed method must produce silhouette sets for

which shape features can be estimated more accurately from the merged silhouette set than from any of the

original silhouette sets. The shape features measured fromthe merged silhouette set should also be more

accurate than the mean value computed from both original silhouette sets, otherwise the merging method is

not providing any benefit.

6.4.1 Volume Estimation with Synthetic Data

A set of volume estimation experiments was carried out usingthe synthetic garnet data. Synthetic data

provide two important advantages over real data: (1) exact ground truth is known for the stone volumes,

(2) the exact ground truth is known for the relative poses between silhouette set pairs. Knowing the ground

truth relative poses allows one to compare the accuracy of volume estimates based on inferred pose with

those computed using the actual pose. This provides an indication of how well the proposed method performs

compared with the optimal (i.e., exact) alignment.

Table 6.2 presents the results of the volume estimation experiments for a synthetic six-camera setup. The

table shows the mean percentage error of volume estimation using volumes of the visual hull or VEMH as

estimates of stone volume. (The VEMH can be used because the synthetic stones are convex.) The mean

percentage error gives an indication of the systematic error associated with a volume estimate. Since the

visual hull is an upper bound for the volume of the stone that produced the silhouettes, the volume estimates

tend to be overestimates and the percentage errors are therefore positive. However, when computed using

noisy data, cone intersections will erroneously carve awayextra volume, yet cannot add extra volume. This

means that with sufficient noise, the visual hull-based volume estimates become underestimates. This is the

case with the rightmost column in which the images have the greatest degree of downsampling.

The table shows RMS percentage errors for volume estimates computed using the equation

Vest= kVshape, (6.12)

whereVest is the volume estimate,Vshapeis the volume of the 3D approximation to the stone (either thevisual

hull or the VEMH), andk is a constant selected such that the mean percentage error iszero. The constantk is

used to remove the systematic component of error. (Since visual hulls will consistently overestimate volume,

it makes sense to correct for this bias.) The value ofk is estimated from the data. This biases the computed

error downwards, but since the one degree of freedom is smallwith respect to the number of samples (246),

this bias is negligible. The approach of bias removal using multiplication by a constant determined from the

data will be used for further shape property estimation in this chapter.
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Confidence intervals given in the table are computed using Efron’s bias-corrected and accelerated bootstrap

method [36]. (This method is used for all the confidence intervals presented in this thesis.)

The table indicates that the proposed method provides volume estimates close to those obtained using the

exact alignment. For the higher resolution images, the merged silhouette sets provide better volume estimates

than the original silhouette sets from which they are formed. The mean of the volume estimates from the

pairs of original silhouette sets provides a better volume estimate than the original silhouette sets, but at

sufficiently high resolution it is not as accurate as the estimates from merged silhouette sets.

VEMHs provide more accurate volume estimates than visual hulls for higher resolution images, but not for

lower resolution images. This is because at lower resolution, substantial portions of cone strips are destroyed,

resulting in large regions in which there are no midpoints. This reduces the volumes of the computed VEMHs

and increases the volume variance, since cone strip regionsare destroyed at random.

The table also shows volume estimates based on the geometricand arithmetic means of the silhouette areas.

(All of the silhouettes for the merged silhouette sets are used, i.e., 12 silhouettes per stone for the results

shown in Table 6.2.) To remove the effect of depth on silhouette size, the depthz of the visual hull centroid

is used. Silhouettes are specified in normalised image coordinates and then multiplied by the depth factorz.

This closely approximates an orthographic projection since the depth of the stone is large with respect to the

depth variation of points on the rim and the visual hull centroid.

The volume estimateVΣ based on the arithmetic mean is computed as follows:

VΣ = kΣ

n

∑
i=1

A3/2
i , (6.13)

whereAi is the area of theith silhouette, andkΣ is an empirically determined constant.

The volume estimateVΠ based on the geometric mean is computed as follows:

VΠ = kΠ

n

∏
i=1

A3/2n
i = kΠ exp

(

3/2n

n

∑
i=1

lnAi

)

, (6.14)

wherekΠ is an empirically determined constant.

The factors of3/2 in Equations 6.13 and 6.14 ensure a linear relationship withvolume for parallel projections

of a set of objects with the same shape and orientation, but varying size. In practice, variation in object shape

and orientation is the main source of error.

Table 6.2 indicates that volume estimates based on silhouette area are less affected by image resolution

reduction than the visual hull- and VEMH-based estimates. For higher resolution cases, the area-based esti-

mates perform worse than the competing methods, whereas at the lowest resolution considered, the geometric

mean of area provides a more accurate volume estimate than those derived from the merged silhouette sets.

Arithmetic mean is the approach to volume estimation investigated by Taylor [126].
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1/4 resolution 1/8 resolution 1/16 resolution 1/32 resolution
quality 922.7 483.6 213.9 86.4

ET error 0.201 pixels 0.380 pixels 0.863 pixels 2.125 pixels

merged +3.70% +3.38% +1.47% -8.32%
pose est. 1.28% 1.30% 1.61% 5.34%

VH (1.12%,1.49%) (1.15%,1.50%) (1.45%,1.82%) (4.89%,5.86%)

merged +3.70% +3.37% +1.45% -8.38%
true pose 1.28% 1.31% 1.62% 5.41%

VH (1.13%,1.48%) (1.15%,1.50%) (1.45%,1.83%) (4.94%,6.02%)

merged +1.20% +0.63% -2.08% -14.76%
pose est. 0.95% 1.00% 1.70% 7.13%
VEMH (0.83%,1.11%) (0.88%,1.14%) (1.55%,1.88%) (6.52%,7.89%)

merged +1.19% +0.62% -2.09% -14.71%
true pose 0.94% 0.99% 1.71% 7.33%

VEMH (0.83%,1.10%) (0.88%,1.12%) (1.56%,1.88%) (6.66%,8.20%)

Run 1 +8.37% +8.15% +6.74% -0.66%
6-view 2.13% 2.15% 2.25% 4.06%

VH (1.88%,2.55%) (1.90%,2.54%) (2.01%,2.59%) (3.73%,4.44%)

Run 2 +8.21% +8.00% +6.54% -0.90%
6-view 2.14% 2.17% 2.30% 4.34%

VH (1.96%,2.36%) (1.97%,2.40%) (2.09%,2.53%) (3.96%,4.76%)

mean of +8.29% +8.07% +6.64% -0.78%
Run 1+2 1.67% 1.70% 1.83% 3.85%

VH (1.50%,1.93%) (1.53%,1.97%) (1.66%,2.07%) (3.56%,4.19%)

Run 1 +1.72% +1.39% -0.44% -9.83%
6-view 1.92% 1.94% 2.14% 5.36%
VEMH (1.71%,2.24%) (1.74%,2.25%) (1.95%,2.41%) (4.94%,5.83%)

Run 2 +1.56% +1.25% -0.56% -10.13%
6-view 1.93% 1.99% 2.17% 5.80%
VEMH (1.76%,2.12%) (1.81%,2.19%) (1.97%,2.40%) (5.32%,6.42%)

mean of +1.64% +1.32% -0.50% -9.98%
Run 1+2 1.54% 1.58% 1.79% 5.25%
VEMH (1.40%,1.75%) (1.44%,1.77%) (1.63%,1.97%) (4.83%,5.72%)

geometric 4.41% 4.40% 4.44% 4.95%
mean of area (3.77%,5.68%) (3.78%,5.73%) (3.83%,5.87%) (4.42%,6.00%)

arithmetic 5.71% 5.71% 5.75% 6.19%
mean of area (4.84%,7.48%) (4.86%,7.48%) (4.91%,7.50%) (5.41%,7.74%)

Table 6.2: Volume estimation using the six-view synthetic garnet data at various image resolution levels. Quality is the mean
silhouette diameter divided by the mean ET error. ET error isthe mean internal ET error over all silhouette sets. Mean percentage
error is shown in italics. RMS percentage error is shown in boldface with 95% confidence intervals in brackets. Merged pose est.
indicates that silhouette set pairs were merged using the proposed method. Merged true pose indicates that the ground truth pose
value was used for merging. VH (visual hull) or VEMH indicates the method of 3D shape approximation used.
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Table 6.3 shows the results of the volume estimation experiment applied to synthetic data formed using

different numbers of cameras. Results for the two-camera setup clearly show that merging pairs of two-

view silhouette sets provides poses that are insufficientlyclose to the true pose to provide improvements in

volume estimation accuracy. Whereas the estimates based onmerging using the true pose provide volume

estimates that are more accurate than the competing methods, merging using the estimated pose provides

volume estimates that are worse than the other corresponding hull-based methods. Increasing the number

of cameras to three offers a substantial improvement: the volume estimates computed using the estimated

pose are almost as accurate as those computed using the true pose. Increasing the number of cameras further

provides a far greater improvement in the accuracy of methods based on the visual hull and the VEMH than

the area-based methods.

6.4.2 Caliper Diameter Estimation with Synthetic Data

A further experiment to investigate the accuracy of caliperdiameter estimation was carried out with the

six-view silhouette sets at1/4 resolution level.

Ground truth values were determined for the shortest, intermediate, and longest diameters for the mesh

models of stones.

Table 6.4 presents the results of estimating caliper diameters from the visual hulls and VEMHs of merged

and original silhouette sets. Again, the estimates from thesilhouette sets merged using the proposed method

produce results that are very close to the results obtained using the ground truth poses for alignment. The

proposed method also produces results that are more accurate than results that are computed from the original

silhouette sets. The table also indicates that the longest diameter can be estimated more accurately than the

shortest and intermediate diameters.

6.4.3 Mass Estimation with Data from the Two-Mirror Setup

The three runs of 5-view silhouette sets of the gravel data set were merged into 15-view silhouette sets using

the proposed method. Figure 6.13 shows some examples of the 15-view visual hull models and photographs

of the gravel from the same viewpoint (the photographs are cropped portions of the input images). Also

shown are the three 5-view visual hulls from the original 5-view silhouette sets. The figure shows a version

of the 15-view visual hull that is coloured according to which of the 5-view visual hulls share the surface

region. This demonstrates that each of the three silhouettesets tends to contribute at least somewhat to the

final 15-view visual hull.

Figure 6.14 shows some more examples of photographs of gravel and 15-view visual hulls rendered from the

same viewpoint. These figures provide a qualitative illustration of the degree of accuracy that one can expect

when using the two-mirror setup together with the proposed merging method. Since the visual hulls cannot
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2 cameras 3 cameras 4 cameras 10 cameras

merged +11.33% +8.93% +6.29% +2.10%
pose est. 9.52% 2.82% 2.36% 0.65%

VH (8.46%,11.21%) (2.52%,3.26%) (2.06%,2.75%) (0.57%,0.76%)

merged +17.22% +8.96% +6.29% +2.09%
true pose 6.01% 2.79% 2.35% 0.65%

VH (5.15%,7.88%) (2.48%,3.22%) (2.06%,2.75%) (0.57%,0.76%)

merged -5.70% +1.60% +1.62% +0.77%
pose est. 13.98% 2.71% 1.78% 0.48%
VEMH (12.40%,16.06%) (2.37%,3.27%) (1.57%,2.07%) (0.43%,0.56%)

merged +1.31% +1.66% +1.62% +0.77%
true pose 5.95% 2.55% 1.78% 0.48%

VEMH (5.11%,7.45%) (2.30%,2.94%) (1.56%,2.06%) (0.43%,0.56%)

Run 1 +41.10% +19.81% +14.24% +4.64%
6-view 7.57% 4.33% 3.99% 1.25%

VH (6.66%,9.43%) (3.71%,5.41%) (3.57%,4.62%) (1.11%,1.44%)

Run 2 +41.67% +19.46% +14.21% +4.60%
6-view 9.36% 4.18% 3.69% 1.18%

VH (7.26%,15.14%) (3.70%,5.40%) (3.37%,4.10%) (1.04%,1.46%)

mean of +41.38% +19.63% +14.23% +4.62%
Run 1+2 6.85% 3.39% 2.96% 0.93%

VH (5.27%,10.97%) (2.87%,4.49%) (2.68%,3.32%) (0.84%,1.06%)

Run 1 -26.99% -8.49% -0.75% +1.78%
6-view 7.65% 4.66% 3.99% 0.96%
VEMH (6.70%,9.92%) (3.94%,5.85%) (3.57%,4.57%) (0.86%,1.12%)

Run 2 -26.73% -8.68% -0.76% +1.73%
6-view 9.39% 4.71% 3.60% 0.93%
VEMH (7.30%,14.63%) (4.11%,6.38%) (3.30%,4.00%) (0.82%,1.10%)

mean of -26.86% -8.58% -0.76% +1.76%
Run 1+2 7.15% 4.16% 3.02% 0.72%
VEMH (5.52%,11.22%) (3.55%,5.54%) (2.72%,3.37%) (0.65%,0.81%)

geometric 10.14% 5.80% 4.93% 4.24%
mean of area (8.97%,12.78%) (4.84%,7.59%) (4.32%,6.08%) (3.66%,5.40%)

arithmetic 10.29% 6.38% 6.04% 5.67%
mean of area (9.17%,12.68%) (5.33%,8.31%) (5.21%,7.65%) (4.80%,7.32%)

Table 6.3: Volume estimation using the synthetic garnet data with different numbers of cameras at the1/4 resolution level. Mean
percentage error is shown in italics. RMS percentage error is shown in boldface with 95% confidence intervals in brackets. Merged
pose est. indicates that silhouette set pairs were merged using the proposed method. Merged true pose indicates that theground truth
pose value was used for merging. VH (visual hull) or VEMH indicates the method of 3D shape approximation used.
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Diameter Shortest Intermediate Longest

merged +1.82% -0.72% -1.11%
pose est. 3.06% 2.76% 1.05%

VH (2.49%,3.94%) (2.47%,3.14%) (0.94%,1.21%)

merged +1.81% -0.78% -1.13%
true pose 3.08% 2.80% 1.07%

VH (2.50%,3.96%) (2.51%,3.17%) (0.97%,1.24%)

merged +0.58% -1.63% -1.83%
pose est. 2.34% 2.89% 1.02%
VEMH (1.99%,2.80%) (2.49%,3.77%) (0.91%,1.19%)

merged +0.56% -1.71% -1.84%
true pose 2.35% 2.74% 1.06%

VEMH (2.03%,2.77%) (2.32%,3.69%) (0.95%,1.22%)

Run 1 +4.10% +1.07% +0.48%
6-view 4.93% 4.67% 1.42%

VH (4.22%,6.03%) (4.15%,5.36%) (1.29%,1.56%)

Run 2 +3.76% +0.61% +0.47%
6-view 4.38% 4.77% 1.46%

VH (3.84%,5.15%) (4.25%,5.50%) (1.33%,1.65%)

mean of +3.93% +0.84% +0.48%
Run 1+2 3.85% 3.72% 1.27%

VH (3.31%,4.60%) (3.36%,4.16%) (1.16%,1.42%)

Run 1 +1.68% -0.90% -1.12%
6-view 3.58% 3.18% 1.10%
VEMH (3.13%,4.36%) (2.76%,3.82%) (0.99%,1.23%)

Run 2 +1.54% -1.04% -1.17%
6-view 3.67% 3.05% 1.06%
VEMH (3.25%,4.26%) (2.64%,3.66%) (0.96%,1.18%)

mean of +1.61% -0.97% -1.15%
Run 1+2 3.03% 2.52% 0.91%
VEMH (2.65%,3.62%) (2.24%,2.88%) (0.82%,1.04%)

Table 6.4: Estimating the three caliper diameters using pairs of synthetic 6-view silhouette sets at the1/4 resolution level. Mean
percentage error is shown in italics. RMS percentage error is shown in boldface with 95% confidence intervals in brackets. Merged
pose est. indicates that silhouette set pairs were merged using the proposed method. Merged true pose indicates that theground truth
pose value was used for merging. VH (visual hull) or VEMH indicates the method of 3D shape approximation used.
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Figure 6.13: Some examples of visual hulls of pieces of gravel. The first column shows original images of the gravel. The second
column shows the 15-view visual hull (formed from three 5-view silhouette sets) from the same viewpoint as the first column. The
third column shows the 15-view visual hull surfaces coloured according to which of the three original 5-view visual hulls contributes
to the surface region. The three original visual hull modelsare shown to the right in corresponding colours.
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Figure 6.14: Images of pieces of gravel with visual hulls shown from the same viewpoint. The visual hulls were formed from three
images of the stones, yielding 3×5 = 15 silhouettes for each visual hull.
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model concavities, they exhibit regions of extra volume in certain places due to the lack of total coverage of

the viewing sphere, and they show some striations due to image noise. Nonetheless, these 3D shapes appear

to be likely to provide a better representation of particle shape than ellipsoidal models sometimes used in

simulations.

Visual hulls of gravel were used to estimate the mass of gravel particles. VEMHs were not used as the gravel

stones are nonconvex, whereas the VEMH approximates the convex hull of an object. The visual hull volume

is used to form a mass estimatemest as follows:

mest= cVVH , (6.15)

wherec is an empirically determined constant andVVH is the visual hull volume. The constantc accounts for

both the tendency of the visual hull to be an overestimate of stone volume and an implicit estimate of gravel

density.

The mass estimates are limited by the extent to which gravel density varies from stone to stone. Attempts to

measure ground truth volume (using the Archimedes Principle: weigh each stone in air and, using a cradle,

underwater) rather than mass were abandoned, as the volume measurements were insufficiently repeatable.

Table 6.5 shows the results of gravel mass estimation. Note that unlike in the case of synthetic garnet data,

the accuracy that can be achieved is limited by both the variation in density from stone to stone, and the

variation in concavities from stone to stone. The table shows that the proposed merging method produces

somewhat more accurate mass estimation results than averaging the volume estimation results from the three

original silhouette sets. The table also indicates that thevisual hull-based estimates are more accurate than

the area-based estimates.

mass estimator RMS%E 95% CI

merged 15-view visual hull volume 5.97% ( 4.90%, 8.18%)
5-view visual hull volumes 7.63% ( 6.80%, 9.41%)

mean of three 5-view visual hull volumes 6.54% ( 5.62%, 8.60%)
5-view geometric mean of area 10.99% ( 9.95%, 12.46%)

15-view geometric mean of area10.11% ( 9.04%, 11.60%)
5-view arithmetic mean of area 12.23% (11.17%, 13.70%)

15-view arithmetic mean of area 11.00% ( 9.87%, 12.52%)

Table 6.5: RMS percentage errors (RMS%E) and 95% confidence intervalsfor gravel mass estimates.

Figure 6.15 shows plots of mass versus visual hull volume forthe 5-view and 15-view visual hulls. The

plots show a linear relationship between mass and visual hull volume, with variability decreasing when

fifteen views are used instead of five. Note that the data points associated with the largest error are gross

overestimates of visual hull volume (due to unfavourable stone orientation), whereas gross underestimates
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Figure 6.15: Plots of gravel mass versus visual hull volume for 5-view visual hulls(left) and 15-view visual hulls(right).

of volume are not possible (in the absence of gross segmentation or calibration errors) since the visual hull

is always larger than the stone.

6.4.4 Caliper Diameter Estimation with Data from the Two-Mirror Setup

Vernier calipers were used to manually measure the longest,intermediate, and shortest diameter of 100 of

the stones from the gravel data set. Each stone was measured three times on three separate days, and the

median value was used as a ground truth value.

Figure 6.16 shows plots of the manually measured diameter values versus estimates based on 5-view sil-

houette sets using visual hulls and VEMHs. Silhouette-based estimates of the longest diameter agree more

closely with manually estimated values for the longest diameter than for the intermediate and shortest diam-

eter.

Table 6.6 shows error statistics for estimating caliper diameters using 5-view silhouette sets.

Visual hull VEMH
mean RMS RMS adjusted mean RMS RMS adjusted

shortest +8.04% 17.01% 14.05% +3.10% 10.78% 10.08%
intermediate +11.49% 15.59% 9.58% +9.85% 14.08% 9.28%

longest +1.01% 1.78% 1.45% +0.15% 0.93% 0.92%

Table 6.6: Percentage errors for diameter estimates based on 5-view silhouette sets formed from the gravel data set. The ‘RMS
adjusted’ value is computed after multiplying estimates bya constant to compensate for systematic error.

Coefficients of variation are shown for manual and silhouette-based caliper estimates in Table 6.7. The table
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Figure 6.16: Plot of manual caliper measurements versus estimates based on 5-view silhouette sets for the gravel data set using (a)
visual hull-based caliper estimates, and (b) VEMH-based estimates.

manual visual hull VEMH
shortest 6.53% 4.23% 2.83%

intermediate 5.68% 3.60% 2.34%
longest 1.34% 0.76% 0.42%

Table 6.7: Coefficients of variation of caliper diameters determinedusing different methods.

indicates that the manual measurements are the least repeatable. This means that inaccurate ground truth

may account for the high errors observed in Table 6.6. The coefficients of variation indicate that the VEMH-

based estimates are more repeatable than those based on visual hulls. For all three methods, estimates of the

longest diameter are the most repeatable, whereas estimates of the shortest diameter are the least repeatable.

Figure 6.17 and Table 6.8 present the results of applying caliper diameter estimation to the 15-view merged

silhouette sets formed from the original 5-view silhouettesets. The results indicate an improvement over the

5-view silhouette sets (see Figure 6.16 and Table 6.6).

Visual hull VEMH
mean RMS RMS adjusted mean RMS RMS adjusted

shortest +2.47% 11.37% 10.96% -0.08% 7.91% 7.97%
intermediate +9.86% 13.91% 9.02% +9.11% 13.75% 9.56%

longest +0.03% 0.75% 0.75% -0.14% 0.77% 0.76%

Table 6.8: Percentage errors for diameter estimates based on 15-viewsilhouette sets formed from the gravel data set. The ‘RMS
adjusted’ value is computed after multiplying estimates bya constant to compensate for systematic error.
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Figure 6.17: Plot of manual caliper measurements versus estimates based on merged 15-view silhouette sets for the gravel data set
using (a) visual hull-based caliper estimates, and (b) VEMH-based estimates.

6.4.5 Mass Estimation with Data from the Six-Camera Setup

Mass measurements were made for the data set of 1423 uncut gemstones (illustrated on pages 222–224)

using an electronic balance. Ten runs of 6-view silhouette sets were captured for each stone.

Mass estimates were carried out by multiplying the computedvisual hull volume by a constant factor deter-

mined from the data (Equation 6.15).

Table 6.9 presents the results in terms of RMS percentage error for mass estimates computed using various

silhouette-based methods. The table shows that greater volume estimation accuracy is achieved using merged

visual hull volume, than by using the mean volume of the original 6-view visual hulls. However, both

approaches increase in accuracy as the number of runs (and hence the number of available views) is increased.

Results are also shown for visual hulls that are formed by aligning silhouette sets using the principal axes of

visual hulls or VEMHs rather than adjusting pose to minimiseET error. These approaches produce inferior

results to the ET minimised silhouette sets, and volume estimation error tends toincreaseas the number of

runs is increased. Results are also shown for area-based mass estimates. These are substantially less accurate

than visual hull-based estimates, and show only small improvements in accuracy as the number of available

views is increased. Again, mass estimates based on the product of areas (geometric mean) outperform those

based on the sum of areas (arithmetic mean).

Mass estimation was carried out on subsets of the 6-view silhouette sets to investigate performance using a

small number of views. Then-view subsets are formed by discarding all but the firstn views from the six

available views. The results shown in Table 6.10 indicate that visual hull-based mass estimates outperform

area-based methods even when as few as two views are used. However, the first column of the table shows
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No.
merged

mean VH VEMH geometric arithmetic
Runs VH vol. aligned aligned area mean area mean

1
4.88% 9.21% 10.97%

(4.7, 5.3) (8.8, 9.8) (10.3, 11.8)

2
3.97% 4.67% 4.60% 4.61% 9.12% 10.92%

(3.8, 4.3) (4.5, 5.0) (4.4, 4.9) (4.4, 4.9) (8.7, 9.7) (10.3, 11.7)

3
3.63% 4.66% 4.66% 4.65% 9.08% 10.92%

(3.5, 3.9) (4.4, 5.0) (4.5, 5.0) (4.5, 5.0) (8.6, 9.6) (10.3, 11.7)

4
3.48% 4.60% 4.81% 4.77% 9.05% 10.92%

(3.3, 3.8) (4.4, 5.0) (4.6, 5.1) (4.6, 5.1) (8.6, 9.6) (10.2, 11.7)

5
3.35% 4.55% 4.95% 4.90% 9.05% 10.92%

(3.2, 3.6) (4.3, 4.9) (4.7, 5.2) (4.7, 5.2) (8.6, 9.6) (10.3, 11.8)

6
3.28% 4.52% 5.08% 5.03% 9.06% 10.92%

(3.1, 3.6) (4.3, 4.9) (4.9, 5.3) (4.8, 5.3) (8.6, 9.6) (10.3, 11.7)

7
3.23% 4.49% 5.21% 5.14% 9.04% 10.92%

(3.1, 3.5) (4.3, 4.9) (5.0, 5.4) (4.9, 5.4) (8.6, 9.6) (10.3, 11.7)

8
3.21% 4.49% 5.33% 5.26% 9.05% 10.92%

(3.0, 3.5) (4.3, 4.8) (5.1, 5.6) (5.1, 5.5) (8.6, 9.6) (10.3, 11.7)

9
3.20% 4.50% 5.45% 5.37% 9.06% 10.93%

(3.0, 3.5) (4.3, 4.8) (5.3, 5.7) (5.2, 5.6) (8.6, 9.6) (10.3, 11.7)

10
3.18% 4.50% 5.57% 5.48% 9.06% 10.93%

(3.0, 3.4) (4.3, 4.9) (5.4, 5.8) (5.3, 5.7) (8.6, 9.6) (10.2, 11.7)

Table 6.9: RMS percentage errors for mass estimates based on 1–10 runsof 6-view silhouette sets of the data set of 1423 uncut
gemstones: ‘merged’ is visual hulls formed from merging theavailable runs of silhouette sets with the proposed method;‘mean VH
vol.’ uses the mean value of the 6-view visual hull volumes for the available runs; ‘VH aligned’ uses merged visual hull volume,
but without minimisation of ET error—visual hull principalaxes and third order moments are used instead; ‘VEMH aligned’ uses
merged visual hull volume with VEMH principal axes and thirdorder moments used for merging; ‘geometric’ and ‘arithmetic’ use
silhouette areas to estimate mass. Ninety-five percent confidence interval computed using a bootstrap approach are given in brackets.

cameras n-view merged geometric arithmetic
n VH 2n-view VH area mean area mean

2
13.80% 14.92% 15.99% 16.48%

(12.70%, 15.16%) (13.93%, 16.21%) (14.88%, 17.60%) (15.32%, 18.12%)

3
9.67% 6.35% 13.21% 13.85%

( 8.78%, 11.10%) ( 5.98%, 6.84%) (12.12%, 14.97%) (12.74%, 15.68%)

4
6.41% 4.75% 10.69% 11.95%

( 6.04%, 7.00%) ( 4.53%, 5.06%) (10.02%, 11.60%) (11.15%, 13.03%)

5
5.25% 4.16% 9.32% 10.86%

( 5.02%, 5.59%) ( 3.98%, 4.42%) ( 8.83%, 9.98%) (10.24%, 11.68%)

6
4.88% 3.98% 9.21% 10.97%

( 4.65%, 5.25%) ( 3.79%, 4.27%) ( 8.73%, 9.79%) (10.30%, 11.73%)

Table 6.10: RMS percentage errors for mass estimation of 1423 uncut gemstones using subsets of the original 6-view silhouette sets:
‘n-view VH’ uses then-view visual hull volumes to estimate mass; ‘merged 2n-view VH’ uses visual hulls formed by merging two
runs ofn-view silhouette sets; ‘geometric’ and ‘arithmetic’ usen silhouette areas to estimate mass. Ninety-five percent confidence
intervals are bracketed.
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a substantial increase in accuracy as the number of views is increased from two to six. Merging pairs of

2-view silhouette sets produces less accurate results thanconsidering the 2-view silhouette sets individually.

This is because the 2-view silhouette sets do not provide sufficient constraints to produce accurate alignment.

However, merging using three or more views leads to more accurate mass estimates than using the original

silhouette sets before merging.

6.5 Summary

A method for merging more than one silhouette set of the same object into a single large silhouette set has

been presented. The method adjusts relative pose to minimise the ET error across silhouette sets. Start-

ing points for the minimisation are determined by using moments to align 3D approximations of the object

computed from each of the original silhouette sets. When moment-based starting points do not lead to a suf-

ficiently low ET error, starting points formed using a uniform random rotational component are considered.

Qualitative results computed using everyday objects such as toy animals demonstrate that better reconstruc-

tions can be obtained from a merged silhouette set than from any of the original silhouette sets used to form

the merged set.

Experiments carried out using synthetic data demonstrate that volume estimates based on the merged silhou-

ette sets are more accurate than those based on the original silhouette sets. Volume estimates computed using

silhouette sets merged by minimising ET error are close to asaccurate as those computed using silhouettes

sets merged using the ground truth poses. Caliper diameter estimates are also more accurately estimated

from merged silhouette sets than from the original silhouette sets.

The method is applied to data sets of stones captured using both the two-mirror setup and the six-camera

setup. The accuracy with which mass and caliper diameters can be estimated is quantified. Mass estimates

based on visual hull volume are demonstrated to be more accurate than those based on silhouette area.

Results are compared with estimates based on merged silhouette sets. The merged silhouette sets show

an improved accuracy for mass estimates and caliper diameter estimates. The accuracy associated with

the caliper diameter estimates is likely underestimated, because of the difficultly in accurately manually

measuring the ground truth values with a Vernier caliper. The silhouette-based methods are found to be more

repeatable over multiple runs than the manual measurements.
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