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Abstract

Multi-view shape-from-silhouette systems are increasingly used for analysing stones. This thesis presents
methods to estimate stone shape and to recognise individual stones from their silhouettes.

Calibration of two image capture setups is investigated. First, a setup consisting of two mirrors and a cam-
era is introduced. Pose and camera internal parameters are inferred from silhouettes alone. Second, the
configuration and calibration of a high throughput multi-camera setup is covered.

Multiple silhouette sets of a stone are merged into a single set by inferring relative poses between sets.
This is achieved by adjusting pose parameters to maximise geometrical consistency specified by the epipolar
tangency constraint. Shape properties (such as volume, flatness, and elongation) are inferred more accurately
from the merged silhouette sets than from the original silhouette sets.

Merging is used to recognise individual stones from pairs of silhouette sets captured on different occasions.
Merged sets with sufficient geometrical consistency are classified as matches (produced by the same stone),
whereas inconsistent sets are classified as mismatches.

Batch matching is determining the one-to-one correspondence between two unordered batches of silhouette
sets of the same batch of stones. A probabilistic framework is used to combine recognition by merging
(which is slow, but accurate) with the efficiency of computing shape distribution-based dissimilarity val-
ues. Two unordered batches of 1200 six-view silhouette sets of uncut gemstones are correctly matched in
approximately 68 seconds (using a 3.2 GHz Pentium 4 machine).

An experiment that compares silhouette-based shape estimates with mechanical sieving demonstrates an
application using the developed methods. A batch of 494 garnets is sieved 15 times. After each sieving,

silhouette sets are captured for sub-batches in each bin. Batch matching is used to determine the 15 sieve
bins per stone. Better estimates of repeatability, and better understanding of the variability of the sieving
process is obtained than if only histograms (the natural output of sieving) were considered. Silhouette-based
sieve emulation is found to be more repeatable than mechanical sieving.
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Chapter 1

Introduction

1.1 Overview and Motivation

Silhouette images of a stone provide cues for (1) inferring properties of the imaging system, (2) inferring
properties of the 3D shape of the stone, and (3) recognising the stone from previously stored silhouettes.

This thesis addresses these inference and recognition problems.

Silhouette images are frequently used in computer vision applications as a simple and robust means for
inferring the shape properties of 3D objects. For instance, the visual hull is the largest object consistent with
a set of silhouettes captured from known viewpoints. Shape-from-silhouette often involves using the visual
hull to approximate the 3D shape of the object that produced the silhouettes.

Since, under controlled conditions, foreground and background regions in an image can be distinguished us-
ing simple and reliable methods, shape-from-silhouette approaches have become popular in the geosciences
for measuring 3D size and shape properties (such as volume, elongation, and flatness) of individual stones
or other rigid particles∗. Such information is useful for many purposes ranging from value estimation of
gemstones to predicting the strength of concrete.

This thesis aims to extend the functionality of silhouette-based particle analysis by developing and analysing
new algorithms that are based on recently-developed ideas in the field of computer vision. The application
of silhouette-based techniques to stones rather than general objects provides the useful constraint of rigidity:
the 3D shape of the imaged object is assumed not to vary over time.

Multiple silhouette views of individual particles provide information that will be used for different purposes:

1. inferring characteristics of the imaging system (camera calibration),

∗The term particle is commonly used in the geosciences literature to refer to stones, rock fragments, coarse aggregate, mineral
grains, pebbles, and so on.
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2. inferring particle size and shape properties, and

3. recognising individual particles from their silhouettes.

The following sections briefly overview these three topics.

1.1.1 Camera Calibration

When the imaging characteristics (such as the camera’s focal length and principal point) and pose (position
and orientation) associated with silhouettes are known, then the silhouette set is calibrated. Once the values
of calibration parameters are known, it is possible to determine the 3D rays corresponding to 2D points on
the silhouette images in a common reference frame. Camera calibration† is an important first step for both
the recognition and 3D shape analysis algorithms developed in this thesis.

Traditionally, camera calibration has been achieved by observing the image locations of points with known
3D coordinates. Camera parameters are estimated by minimising the difference between observed image
points and those predicted by the parameterised camera model.

More recently, there has been interest in self-calibration [40, 58]. Self-calibration solves the calibration

problem without using images of marker patterns whose 3D coordinates are known in advance; instead, the
images themselves are used (e.g., images of stones in the context of this thesis). Corresponding scene points
whose 3D coordinates are initially unknown are used to simultaneously compute both the 3D coordinates
and the camera parameters in a process known as bundle adjustment. There has also been activity in self-
calibration using silhouettes instead of point correspondences. To render the problem tractable, some form
of additional information is incorporated, such as knowledge that the silhouette set is a circular motion
sequence. In many approaches to calibration, an initial non-optimal solution is computed using a closed-
form solution. The solution is then refined using iterative optimisation. This is the approach taken for
calibrating the setups that are used in this work.

This thesis investigates the possibility of self-calibrating camera setups for capturing multiple silhouette
views of stones. Two types of setups are used for capturing silhouette sets of particles: a setup consisting of
two mirrors and a single camera, and a setup consisting of multiple simultaneously triggered cameras (see
Figure 1.1).

The mirror setup provides a simple means for capturing silhouette images of stones using only readily avail-
able equipment. Two mirrors are used to create a scene containing five views of an object. The five views
are captured in a single image. It will be shown that the silhouettes impose geometrical constraints that can
be used to calibrate each silhouette view.

†In certain contexts, camera calibration may refer to radiometric camera calibration. In this thesis, camera calibration is limited
to geometric camera calibration: inferring camera poses and internal parameters.
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Figure 1.1: The two image capture setups considered in this thesis (top), and examples of corresponding captured images (bottom).
The two-mirror setup (left) provides a simple low cost means of capturing silhouette sets of stones, whereas the six-camera setup
(right) enables high throughput imaging.

The multi-camera setup is a high throughput alternative to the mirror setup. It was constructed by a team of
engineers from the company that commissioned part of the work described in this thesis. The multi-camera
setup is calibrated using images of balls (spheres). The use of ball images aids two aspects of the calibration
procedure: (1) forming an initial parameter estimate, and (2) enforcing absolute scale. Since the distance
from the cameras to the ball is large with respect to the ball size, the Tomasi-Kanade [129] factorisation
method can be used to give a good initial estimate to the calibration parameters. Silhouette centres are used
as approximate point correspondences across multiple views. The calibration parameters are then iteratively
refined using geometrical constraints imposed by the silhouette boundaries.

1.1.2 Size and Shape Properties

Information about particle size and shape is used in the gem industries, mining, and the geological sciences.
The longest, intermediate, and shortest diameter of individual particles are typically recorded, and properties
such as flatness, elongation, sphericity, or compactness are derived from the three diameter values. Manually
measuring the three diameter values is tedious, time-consuming, and error prone. Machine vision systems
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that estimate shape properties from multiple silhouette views therefore provide the potential for saving time
and removing the element of human error.

Particle size is also often one of the most important properties of interest. Volume is usually the most
desirable measure of size [133], yet sizing of particles has been historically carried out using sieves. Sieves
provide only a distribution of sizes of a batch of particles (a histogram), rather than individual per-particle
measurements. Machine vision systems can estimate particle volume as well as emulate sieving. Since
machine vision systems can consider one stone at a time, different shape properties can be measured for each
stone, allowing multi-dimensional distributions to be derived for a batch of stones.

It is not the goal of this thesis to analyse the shape of particles with respect to any industrial or environmental
process, but rather to investigate algorithms and methods that will provide this means (and other related tools)
to particle shape analysts. These include geologists, civil engineers, as well as technicians and researchers
from the gem industries, mining, and the geological sciences.

Shape measurements such as particle volume, elongation, or flatness are not the ultimate output of the
silhouette-based methods described in this thesis. These are a set of measurements that are often useful
to particle shape analysts. Since these shape measurements are commonly-used they are selected as one of
the means of quantifying the performance of the silhouette-based methods. For instance, the performance of
the new self-calibration methods is quantified in the terms of the accuracy with which these shape properties
can be estimated.

It is worth noting that in recent years, particle shape analysts increasingly require 3D shape models of par-
ticles (typically triangular mesh models) rather than values of shape properties (e.g., volume, elongation,

flatness) that summarise particle shape. The 3D shape models may be used as input to simulations car-
ried out using a finite element analysis software package, for instance. Using 3D mesh models of particles
rather than (say) ellipsoids with the same moments up to order two, provides the potential for more accurate
simulations.

1.1.3 Recognition

Although the computer vision literature contains an abundance of articles on image-based biometrics appli-
cations, such as recognising people from their faces or fingerprints, individual particle recognition does not
appear to have received attention in academic literature.

This thesis introduces silhouette-based recognition of individual particles as a research and processing tool
for particle analysis. Recognition (or matching) systems are commonly used for verification or identification.

Identification and verification of stones from silhouette sets is potentially useful for (1) verifying gemstone
origin, and (2) tag stone identification:
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1. Gemstone origin verification. Verification is a potentially useful tool for high value particles such
as uncut gemstones. A silhouette set of a stone can be compared with a silhouette set on record to
confirm that the two silhouette sets correspond to the same stone.

2. Tag stone identification. Gemstone miners often ‘spike’ mines with gemstones of known mass (so-
called tag stones). The tag stones are retrieved after processing to audit the performance of the recovery
process. Currently, tag stones are recovered by humans who identify them by their mass and by
manually comparing them with previously captured photographs. This is a time-consuming procedure.

The methods developed in this thesis are applicable to the problems of gemstone origin verification and tag
stone identification. However, the main recognition task addressed by this thesis is the one-to-one matching
of an unordered batch of stones captured on two separate occasions: a square assignment problem. The
problem is potentially more difficult than identification or verification, since each of n silhouette sets in the
first run‡ must be matched to one of the n silhouette sets in the second run. The matching can be specified by
an n×n permutation matrix in which each element is either one or zero (indicating match or mismatch), and
each row and each column sums to one. The nature of the batch matching problem is illustrated in Figure 1.2.

The ability to match up silhouette sets of an unordered batch of stones across two runs (batch matching) is
potentially useful for several applications:

1. Batch matching can be used to measure the repeatability or accuracy of a stone classifier. The classifier
could be, for example, a mechanical classifier such as a sieve which classifies stones into different sieve
bins according to size, or a human classifier, such as a person who sorts gemstones into different piles
according to colour. (Piling the stones enables efficient sorting, since there are far fewer classes than

stones.) Stones are passed through the multi-camera setup after class labels have been assigned. (To
keep a record of class labels for each silhouette set, it is easiest to pass the stones through the camera
setup in sub-batches of the same class label.) Batch matching will determine the different class labels
that each stone has received after being classified on multiple occasions.

2. Batches of stones are used by various laboratories for research purposes. The stones are often stored
in trays with one stone per compartment so that each stone can be uniquely identified. This means of
storage can become impractical for large batches of stones (of more than about 100 stones). Properties
of the individual stones (such as volume, density, or hardness) may be measured and recorded for the
individual stones at different times. With batch matching technology, the stones need not be separately
stored as the matching process can be used to reconcile the information.

3. This thesis will demonstrate how to merge several silhouette sets of the same particle into a single
large silhouette set in which all silhouettes are specified in a common reference frame. More accurate
estimates of the 3D particle shape can be made from the merged set than from any of the individual

‡In this thesis, the term run is used to refer to a batch of silhouette sets in which one silhouette set is captured for each stone.
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Figure 1.2: The batch matching problem: each six-view silhouette set in the first run (top row) must be matched to the corresponding
silhouette set in the second run (bottom row) using only the silhouette images and corresponding camera calibration information.
Coloured arrows show the desired unknown correspondences: pairs of silhouette sets generated by the same stone. The problem
is difficult because (1) the stones are ordered arbitrarily, and (2) the stones are oriented arbitrarily. The efficient batch matching
algorithm developed in this thesis rapidly estimates the 3D shape of a stone from its silhouettes to identify likely matches. Pairs of
silhouette sets that are geometrically consistent with being produced by the same stone are then sought. This illustration shows a
small data set of n = 4 stones; in practice, data sets will contain hundreds or possibly thousands of stones.

6



sets. Batch matching allows an unordered batch of stones to be passed through the multi-camera setup
several times so that merged silhouette sets can be formed for each stone. Passing unordered batches
of stones through the multi-camera setup is quicker than passing individual stones through one at a
time.

1.2 Research Objectives

The principal objective of this thesis is to develop new algorithms to solve the problems of self-calibration,
recognition, and particle shape analysis using multi-view silhouette sets of particles.

A portion of the work presented in this thesis was carried out as part of a project commissioned by a company
that wishes to remain anonymous. The nature of this company’s specific uses for the developed methods lie
outside the scope of this thesis. However, the methods are by no means applicable only to gemstones.
Data sets of uncut gemstones (in addition to garnets and gravel) were used as test sets in this work as these
were made available by the commissioning company. Indeed, many of the methods developed here have
broader application scope than particle analysis, and can be applied to other objects. Three-dimensional
shape reconstruction for multimedia content creation is an example of an application that will benefit from
some of the methods developed in this thesis. For cases in which the methods are applicable to general
objects, experiments and examples will therefore be given for objects other than stones. Particle analysis,
however, is the unifying theme for the topics covered.

Within the topic of shape and size, the aim is to develop algorithms for estimating properties that are com-
monly used by particle shape analysts. These methods are to then to be used in conjunction with calibration

and recognition methods to quantify the accuracy and repeatability of such systems.

Systems that compute the 3D shape of particles must trade off the desirable characteristics of accuracy,
throughput and affordability (in terms of monetary cost). This thesis investigates two multi-camera setups:
(1) a highly affordable setup that uses two mirrors to generate multiple views, and (2) a high-throughput
system that uses six simultaneously triggered cameras. The goal is to develop separate self-calibration

algorithms for the two setups.

A further goal within the topic of calibration is to demonstrate that multiple silhouette sets of a particle
can be merged into a single large silhouette set in which all silhouettes are specified in a common reference
frame.

The major objective within the recognition component of this thesis is to develop an efficient method for
solving the batch matching problem (as illustrated in Figure 1.2). (In this thesis efficiency will always refer
to the speed of execution, as opposed to, for example, memory efficiency.) To achieve this objective, it is
useful to break it down into several components:
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1. The aim of the first component is to determine, as efficiently as possible and preferably without error,
whether a pair of silhouette sets corresponds to the same stone (a match) or not (a mismatch).

2. The aim of the second component is to develop a rapid means of identifying candidate matches by
assigning a dissimilarity score to silhouette set pairs.

3. The aim of the third component is to combine the first two components to create an algorithm that
makes use of the accuracy of the first component and the efficiency of the second component to solve
the batch matching problem.

The final objective of this thesis is to demonstrate the use of the calibration, recognition, and shape analysis

tools by showing how they can be used together to solve a practical problem: estimating the repeatability of
mechanical sieves and comparing the repeatability with a machine vision emulation of sieving.

1.3 Contributions

The most important novel components of this thesis are the following:

1. The analysis of viewing edges is introduced as an alternative to the visual hull for efficiently estimating
3D shape properties of stones. Viewing edge midpoints are demonstrated to provide more accurate
estimates of 3D properties such as caliper diameter measurements (longest, shortest and intermediate
diameters). The viewing edges are demonstrated to impose geometrical constraints from which the
upper and lower bounds of a stone’s longest and shortest diameters can be computed from its silhouette
set.

2. A novel, low cost mirror-based setup for capturing multiple silhouette views is described, and algo-

rithms for self-calibration are developed. The method provides an accessible and affordable method
for 3D shape reconstruction of stones. The method is not limited to 3D reconstruction of stones and
has been applied to objects other than stones (e.g., toy animals). It can be used as a simple method for
creating 3D multimedia content for people who do not have access to expensive equipment.

3. Calibration of a simultaneously-triggered six-camera setup is achieved by combining two existing
approaches to calibration. Initial parameter estimates are determined using approximate point corre-
spondences and the Tomasi-Kanade method [129]. The initial parameter estimates are then refined by
minimising a cost function based on the outer epipolar tangents [138].

4. A new pose optimisation method for merging several silhouette sets of the same object into a large sil-
houette set is developed. The method allows one to generate an arbitrarily large number of silhouettes
of an object in a common reference frame using an image capture setup that generates a small number
of views. A merged silhouette set provides a more accurate 3D reconstruction and tighter constraints
on 3D shape than any of the original silhouettes sets from which it was formed.
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5. The use of the residual error associated with a merged pair of silhouette sets is demonstrated to be an
effective indicator of whether the pair corresponds to two silhouette sets of the same stone (a match)
or to two silhouette sets of two different stones (a mismatch).

6. An existing shape matching method [103] based on shape distributions is adapted to create a rapidly
computable method for assigning a measure of dissimilarity between two silhouette sets. A batch
matching algorithm is then developed to use both the rapidly computable dissimilarity measures and
the pose optimisation method, to match two runs of silhouette sets of an unordered batch of stones.

The important feature of this batch matching algorithm is its efficiency: a test set of 1200 stones is
correctly matched across two runs in approximately 68 seconds on a 3.2 GHz Pentium 4 machine.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows.

Chapter 2 provides a short historical overview of particle shape analysis in the geosciences. This is provided
because (1) computer vision researchers are unlikely to be familiar with the geosciences literature on this
topic, and (2) this presents a historical background of the work that this thesis extends by developing new
algorithms and methods. First, definitions of shape properties that are of interest are covered, and some

examples of their uses are given to demonstrate that particle shape analysis is a broad field with diverse
goals. Next, silhouette-based machine vision systems that have been designed to measure particle shape
properties are covered.

Chapter 3 introduces background theory on the geometry of silhouette sets that will be used to develop the
methods described in later chapters. The concept of silhouette consistency is introduced and two methods
that will be used throughout the thesis are described: (1) a new silhouette-consistent estimate of 3D shape,
the viewing edge midpoint hull (VEMH), which will be used for estimating 3D shape properties and as
a component of the matching process, and (2) an existing measure of silhouette consistency based on the
epipolar tangency constraint that will be used for calibration and for matching.

Chapter 4 describes a novel low cost image capture setup based on two plane mirrors. The chapter describes
how the camera parameters associated with silhouette views of an object can be computed from the silhou-
ettes alone: there is no need for calibration markers. Since the method can be used to reconstruct the 3D

shape of a broader class of objects than stones, results are demonstrated using both stones and other objects.

Chapter 5 covers the geometric configuration and calibration of a high-throughput alternative to the image
capture setup described in Chapter 4. Heuristics are introduced that are used to determine the positioning
of the cameras. A calibration routine based on silhouette images of a ball is described. Balls of known
dimension allow scale to be enforced, and ball images allow an approximation based on Tomasi-Kanade
factorisation method to be used for forming initial parameter estimates.
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Chapter 6 shows how silhouette sets of the same particle captured in different poses can be merged into a
single large silhouette set by minimising the degree of geometrical inconsistency across the silhouettes. Re-
sults computed using both stones and other objects are presented. The method is applied to objects captured
with the mirror-based setup described in Chapter 4 as well as the six-camera setup described in Chapter 5.

Chapter 7 shows how the pose optimisation and associated error described in the previous chapter is used for
matching or recognising particles from their silhouettes. Other measures of silhouette consistency are cov-
ered. The methods are applied to data sets of stones captured using the mirror setup and the six-camera setup.

Chapter 8 develops a method of rapidly computing a measure of dissimilarity between two silhouette sets.

The method is based on the shape distributions of Osada et al. [103], but is modified to improve efficiency in
the context of silhouette sets of stones. This includes using the VEMH introduced in Chapter 3 as an estimate
of the 3D convex hull of the stone.

Chapter 9 describes a method for efficiently finding the one-to-one correspondences between silhouette
sets from two runs of the same batch of stones. The method makes use of the efficiency of the matching
approach described in Chapter 8 together with the accuracy of the slower method described in Chapter 7. A
probabilistic framework is used to achieve efficiency: a likelihood ratio (indicating the likelihood of being
a match) is associated with each silhouette set pairing across the two runs. Likelihood ratios are updated
using Bayes’s rule as new information is added from the results of pose optimisations. A greedy algorithm is
shown to provide a tractable solution that produces excellent results in terms of running time and accuracy.

Chapter 10 describes an experiment that makes use of the main ideas developed in this thesis: batch match-
ing, estimating shape properties, and calibration. The experiment estimates the repeatability of mechanical

sieving by determining which stones fall into which bins over multiple runs of sieving. Knowing the sieve
bins associated with each particle allows repeatability to be estimated more accurately than if only the bin
counts were known for each run. The repeatability of the mechanical sieving process is compared with a
machine vision emulation in which sieve bin classification is computed using silhouette sets.

Chapter 11 concludes the thesis by reviewing the main contributions and summarising the work. Ideas for
future work are identified.
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Chapter 2

An Overview of Particle Shape Analysis

2.1 Introduction

This chapter provides a historical overview of particle shape and size analysis that is drawn mainly from the
geosciences literature. It is shown how interest has grown in using silhouette-based machine vision methods

to quantify particle shape properties. Initially, single-view systems were used, and more recently there has
been interest in multi-view systems.

The content of this chapter is not required for understanding the methods developed in this thesis. Readers
who are not interested in a historical overview may wish to skip this chapter, and continue reading Chapter 3
on page 25.

2.2 Quantifying Particle Shape

Particle shape analysts in a range of different fields (for example, geomorphologists, civil engineers, process
engineers, hydrologists) are interested in summarising the size and shape (sometimes termed ‘form’) of

particles using a small number of features.

Volume is usually the preferred measure of size [133]. The volume of a particle can be used to estimate
weight (if density is known), or to estimate density (if weight is known). Size distributions play an important
role in determining particle packing and porosity characteristics in asphalt mixes [109]. In the gem industry,
individual particle volume is closely (and nonlinearly) related to the monetary value of each gemstone.
Historically, sieving has been used to characterise the size distributions of large batches of particles, because
of the high throughput that can be achieved.
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Although there are some differences in their precise definitions, the long, intermediate, and short diameters

of a particle are frequently used to summarise its shape. These three diameters are sometimes referred to as
the a, b, and c diameters, respectively [70]. Often a is defined as the longest diameter (a is termed simply
the diameter by computational geometers), c is the shortest diameter (termed the width by computational ge-
ometers), and b is the diameter measured in the direction that is perpendicular to the directions corresponding
to a and c [131]. Note that these diameters are caliper diameters; in other words, they represent distances
between parallel plane pairs that are tangential to the particle. Different variations on the definitions include
measuring the caliper diameters along the principal directions (as determined by the inertia tensor) [4, 127],
and requiring the long diameter to be measured perpendicular to the shortest diameter [71], or requiring the
short diameter to be measured perpendicular to the longest diameter [41].

The a, b, and c diameters are measured in various ways. Manual measurements include the use of a sliding

rod caliper [70], Vernier calipers [59], and a ruler [83]. Automated methods include the use of 3D laser
scanning [71], X-ray tomography [82], and silhouette-based machine vision [87].

The three diameter values are frequently used to provide dimensionless quantifications of particle elongation

and flatness. Two common formulations specify elongation as the ratio a/b, and flatness as the ratio b/c [6].

A measure of sphericity (the degree of compactness) is also often derived from the three parameters. Krum-
bein’s commonly used definition [70] is

sphericity = 3

√
bc
a2 . (2.1)

Zingg’s diagram [144] is a popular means for classifying particles into one of four shape categories and for
visualising the distribution of shape for a batch of particles (see Figure 2.1). Zingg classified particles into
the classes oblate (disk-shaped), spherical (compact), bladed (triaxial) and prolate (rod-shaped), based on
the ratios b/a and c/b. For each particle, the y-coordinate of its data point is b/a, and the x-coordinate is c/b.
Using a threshold of 2/3, the data points that lie in the top left quadrant are oblate; the lower left are bladed;
the upper right are spherical; and the lower right are prolate. Hyperbolic contour lines can be plotted on the
standard chart so that sphericity values can be read off.

It is interesting to note Joshi and Bajcsy’s discussion (within the field of linguistics) on the ways in which
humans interpret shape [66]. The terms ‘flat’, ‘elongated’ and ‘round’ are listed as some of the few non-
template-based terms that humans tend to use to describe 3D shapes. Joshi and Bajcsy’s ‘roundness’ refers
to what is termed ‘sphericity’ in the geosciences literature. People prefer template-based descriptions such
as ‘star-like’.
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Figure 2.1: Zingg’s diagram [144] for classifying particle shapes from the a, b, and c diameters.

2.3 A Range of Analyses of Particle Shape

To provide an indication of the wide range of subjects that make use of measurements of individual particle
shape, this section provides a brief description of a few of the studies described in the literature. In many
cases, it appears that these types of studies will benefit from modern silhouette-based machine vision methods
for quantifying particle shape.

2.3.1 Ice-Rafted Pebbles

Hassler and Cowan [59] collected 331 pebbles from drill sites on the Antarctic Peninsula. The long, interme-
diate, and short axes were manually measured using Vernier calipers. Together with other evidence, the shape
measurements were used to support the hypothesis that the pebbles had been transported as supraglacial de-

bris.

2.3.2 Alluvial Gravel

Lindsey and Shary [83] assessed alluvial gravel deposits by measuring the long, intermediate and short
diameters of 150 pebbles from three locations along the South Platte River in Colorado. The measurements

were performed manually using a ruler. They show that the proportion of equidimensional particles increases
downstream. The study aims to predict the downstream limit of gravel production (mining) and of post-
mining land uses.
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2.3.3 Gold Grains

Wierchowiec [136] uses Zingg diagrams to visualise the shapes of gold grains from different sources. Gold
grains from preglacial and alluvial deposits are observed to be bladed, whereas those from piedmont fan
sediments tend to be oblate. Factors such as hammering and folding during transport, and reflattening after
folding account for the variations in shape.

2.3.4 Anthropogenic Fragment Redistribution

Nyssen et al. [100] monitored rock fragment transportation in the stepped mountains of Ethiopia over a
four year period. Limestone rocks were used as tracers since the existing rocks were basalt and sandstone
(painted rocks were not used since they may have been picked up by shepherds). The long, intermediate, and
short diameters were used to replace basalt and sandstone rocks with limestone tracers of approximately the
same shape. The authors show that the degree of tracer transportation over the years is related to the degree
of over-grazing by livestock and conclude that livestock trampling appears to be an important geomorphic

process.

2.3.5 Estimating Particle Properties with Computer Simulations

Computer simulations of a large number of particles often make use of simplified models of particle shape.

For instance, a sample of particles may be modelled using ellipsoids with the same volume, flatness, and
elongation. Sims et al. [119] use ellipsoidal models of the aggregate particles in concrete to investigate strain
rate. They demonstrate that particle flatness and elongation play an important role in determining concrete
viscosity.

Rather than using simple ellipsoidal models, Bullard, Garboczi, and coworkers [20,52] take advantage of the
power of modern desktop computers to model concrete using 3D shapes based on real aggregate particles
(see Figure 2.2). Using particle shape based on real particles rather than simpler ellipsoidal models has
the potential to provide more accurate simulations. The 3D shape of real aggregate can be determined
using X-ray computed tomography, and then be included in their computer simulations. The authors aim to
use computer modelling to replace empirical testing for predicting concrete properties such as the degree of
hydration, pore percolation, diffusivity, and yield stress viscosity. Simulation predictions of certain properties
such as elastic moduli have been shown to agree closely with values obtained in real experiments.
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Figure 2.2: Computer simulations of concrete using 3D shapes based on real particles: (a) modelling concrete flow (picture
from Bullard et al. [20]), (b) simulation of coarse aggregate in a mortar matrix flowing under mixing forces (picture from Gar-
boczi et al. [52]).

2.4 Single View Silhouette-Based Particle Analysis

Other than shape, particle shape analysts are also interested in angularity and roughness. These properties
are not addressed by this thesis, but are mentioned here since the first attempts at image-based particle
analysis were attempts to measure these properties. Before image-based methods were used, angularity was
determined by comparing particles with Krumbein’s standard chart [70].

Schwarcz and Shane [117] use Fourier coefficients of the boundary of a particle projection (Fourier de-
scriptors) to derive several procedures for quantifying angularity. First, they describe how measurements of
sphericity and angularity might be derived from a 3D model of the stone. They point out that 3D models are
rarely available and proceed to present their measurements that are based on computing the Fourier descrip-
tors of a 2D projection of the stone. A measurement for sphericity is given as the mean squared deviation
between the silhouette boundary and the circular boundary defined by the first Fourier descriptor. The au-
thors investigate several methods for measuring angularity based on Fourier descriptors. One such method
involves determining the number of Fourier coefficients that are required to reconstruct the boundary so that
it fits the original boundary to within a specified tolerance. This type of measurement varies according to
surface roughness as opposed to angularity.

Ehrlich and Weinberg [37] show how Fourier descriptors can be used to discriminate grain differences aris-
ing from geographic, stratigraphic, and process factors. Plots of the average values of the first ten harmonics

are used to discriminate between grains from three different geographical regions with a high success rate.
The same method is used to show how grain shape varies according to its position in the soil profile. Var-
ious means for defining roughness coefficients based on summing a range of Fourier coefficients are also
suggested.
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Diepenbroek et al. [31] give yet another definition of roundness using Fourier descriptors. They discard
the first two Fourier coefficients, which describe an ellipse, and form a weighted sum of the remaining
coefficients, with the higher order coefficients receiving greater weight. The method was used to detect
changes in roundness of gravel clasts being transported down mountain rivers. Changes over distances as
small as 7 km could be detected. Drevin et al. [32, 33] investigate means other than Fourier descriptors
for determining particle roundness. Wavelet and granulometric methods are considered. They show that
their methods and the method of Diepenbroek et al. both produce results that correlate well with the values
indicated by Krumbein’s chart.

2.5 Multi-View Silhouette-Based Particle Analysis

Since using single silhouette views results in the loss of information about the third dimension, there has
recently been research directed towards multi-view silhouette-based particle analysis. The goal of these
methods is to extract information about the three-dimensional shape of individual particles from multiple
silhouette views.

It is the objective of this thesis to extend this line of research by designing algorithms that are based on the
shape-from-silhouette ideas that have been developed in the field of computer vision.

2.5.1 Multiple Views from a Single Camera

Several groups of researchers have considered means for obtaining multiple silhouette views of a particle
using a single camera. Typically this involves moving the particle and capturing images at different instants
in time (although Chapter 4 of this thesis introduces a method in which different silhouette views are captured
simultaneously using mirrors). Using a single camera and moving the particle has the advantage of lower
monetary expense than a multiple camera setup, but this comes at the cost of requiring more time to capture
the images.

Motivated by the high monetary expense of laser scanning and tomographic methods, Taylor [126] and
Lau [72] investigate the use of silhouettes as a cheaper alternative to quantify particle shape. A setup con-
sisting of a turntable with two orthogonal axes of rotation (see Figure 2.3) is used to view a rock from any
direction. Individual rocks are glued to a rod, and images are captured from well-distributed viewpoints. A
ball of known diameter is used to calibrate the setup. The calibration simply provides a conversion from
pixel units to millimetres (and therefore implicitly assumes that depth variation is sufficiently small to have
negligible effect on scale). Taylor and Lau are aware of the visual hull concept, as it is noted that silhou-
ettes place a restriction on the volume of space that contains the object, and a computer vision paper of
Laurentini [74] is cited. However, they decide to limit their initial investigations to estimating volume us-
ing silhouette area. Silhouette area averaged over 13 views is computed for 126 rocks (crushed granite and
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Figure 2.3: Three images from a sequence captured using a turntable device for rotating individual rocks about two different axes
(top row), and the corresponding manually segmented silhouettes (bottom row) (pictures from Lau [72]). The images were used to
investigate volume prediction from multiple silhouette views.

rounded conglomerate rocks from a river bed). Plots of average silhouette area versus weight show a high
degree of correlation.

Chen et al. [25] measure the short, intermediate, and long diameters of a sample of aggregate particles by
attaching the particles to a clear plastic tray with two perpendicular faces. The particles are imaged from two
perpendicular directions by rolling the tray onto each of the two faces. Diameter values are measured from
the silhouette images. Elongated and flat particles are demonstrated to produce hot-mix asphalt with lower
compactibility and higher breakage than compact particles. The use of a tray with the perpendicular faces
for imaging stones from perpendicular directions is also described by Frost and Lai [50].

Fernlund [41] describes a method for capturing multiple views in which particles are moved by hand. Two
views are captured for the particles: a side-on view and a top view. To capture the side-on view, the particles
are manually positioned on a luminous background in a stable position so that their maximum projected area
is observed by an overhead camera. To capture the top view, the particles are manually positioned in an
upright position in a bed of luminous beads and sand. The bed allows the particles to be placed in a stable
position with their longest axes parallel to the viewing direction. The principal benefit of the method is its
low cost. Multiple particle silhouettes are captured in each image. Longest and intermediate diameters are
measured from the side-on image, and shortest and intermediate diameters are measured from the top-view

image. To find the corresponding silhouette pairs for each particle, the silhouettes are sorted by intermediate
diameter value, which is assumed to be the same across the two images. Although it is acknowledged that
this assumption may not hold in all cases, the method is reported to provide results that correlate well with
manual measurements.
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Commercial shape-from-silhouette systems for characterising gemstone shape are produced by Sarin, an
Israeli company, and by Octonus, a Russian company [78]. These systems build 3D visual hull models of
individual rough gemstones to aid gemstone cutters. Multiple silhouette images of the rough gemstone are
captured by a single camera as the stone is rotated on a turntable. The rotation of a stone takes approximately
25 seconds. An optional laser range-finder can also be used to build 3D models of rough gemstones with
concavities.

2.5.2 Multiple Views from Multiple Cameras

Multiple simultaneously triggered cameras provide the potential of greater throughput than multi-view single
camera setups. For this reason, various multi-camera setups have been designed over the last decade. The two
most prominent multi-camera silhouette-based particle analysis systems described in the academic literature
are the WipFrag system and the University of Illinois Aggregate Image Analyser.

WipFrag

The WipFrag system was developed at the University of Missouri-Rolla by Maerz et al. [86, 87]. It consists
of two orthogonally mounted cameras that simultaneously image individual particles (see Figure 2.4).

./figures/background/WipshapeRousan1.eps./figures/background/WipshapeRousan2.eps

Figure 2.4: The WipFrag system. (Picture from Al Rousan [111])

The WipFrag system is used to estimate the aspect ratios and volumes of individual particles from silhouette
images. Elongation, flatness, and volumes are derived from measurements of length, width and height.
Length and width are measured from the top-view image and height is measured from the other. Length is
the longest caliper diameter of the silhouette, and width is the caliper diameter measured perpendicular to
the length. Height is measured from the side-view image. It is the caliper diameter measured in the direction
of the top-view camera. The measured lengths are reordered if necessary so that length is longer than width,
which is in turn longer than height.
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Aspect ratio is the ratio of length to height. Volume is estimated with the following experimentally deter-
mined equation:

volume = 0.8× length×width×height. (2.2)

The vision-based methods were compared with manual caliper measurements of aspect ratio [86], whereas
results for volume estimation are not shown. The vision-based methods are found to be close to the manual
measurements in most cases; closeness is not, however, quantified.

The University of Illinois Aggregate Image Analyser

The University of Illinois Aggregate Image Analyser (UIAIA) is the most sophisticated system for estimating
stone shape from silhouettes that is described in the academic literature. It is the only setup that creates a 3D
model of each stone from multiple silhouettes. The 3D models are used for volume estimation.

The UIAIA setup consists of three orthogonally mounted cameras. A conveyor system presents the stones
to the cameras (see Figure 2.5). Images are captured as each particle triggers a motion sensor. Explicit

./figures/background/UIAIA.eps

Figure 2.5: The UIAIA: a three-camera setup at the University of Illinois (picture from Rao [109]).

calibration of camera poses is not carried out. Rather, the cameras are orthogonally positioned, and images
of spheres are used to ensure that the effective scale factors are the same across the three views. This approach
implicitly assumes that the depth variation of each stone is sufficiently small with respect to the distances to
the cameras that perspective distortion can be ignored. The only explicit calibration that is carried out is to
use images of a sphere to determine the scale factor (that is, a mapping of pixels to millimetres).

Volume estimates are made by computing a three-view visual hull of the stone. However, the term visual
hull is not used, and the method seems to have been developed independently from (and without reference
to) shape-from-silhouette approaches described in the computer vision literature. To compute the visual hull,
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Figure 2.6: Computing the visual hull from three orthogonal views (picture from Rao [109]).

voxels that do not project onto the silhouette foreground in all three images are removed, leaving an estimate
of the 3D shape of the stone (see Figure 2.6).

Volume computation is applied to four spheres of known volume to test the accuracy of the voxel-based
visual hull volume estimates [109]. The largest sphere’s computed visual hull volume ranges from 101.38%
to 102.84% of the sphere volume (5 trials), whereas the smallest sphere’s computed visual hull volume ranges
from 105.77% to 107.60% of the sphere volume (5 trials).

Since the exact 3-view visual hull of a sphere (from three orthogonal orthographic views) is 11.9% larger
than the sphere (see Figure 2.7), it is unsurprising that the visual hull volume produces an overestimate when
used as an approximation of the volume of the imaged object. Inaccuracies in the assumed orientation of the
cameras and image noise tend to result in a computed visual hull that is smaller than the exact visual hull,
since visual hull voxels are required to project to foreground region in all views. Because of this, a real setup
can be expected to produce values lower than 11.9%.

The description of the UIAIA experiments makes no mention that the 3-view visual hull volume is expected
to be larger than the sphere. Spatial quantisation error is given as the reason that the smallest sphere’s results
(which are closest to the noise-free ideal of 11.9%) correspond to the greatest error when using visual hull
volume as an estimate of the volume of the imaged object.

In a further experiment, visual hull volumes are used as an estimate of stone volume for 50 pieces of ag-
gregate. Ground truth values are obtained by weighing the stones and using the known density values to
compute volume. A mean absolute percentage error of 8.74% is reported.

The authors cite the inability of silhouettes to capture information about concavities in the stone as the
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Figure 2.7: (a) A sphere, (b) a 3-view visual hull of the sphere, and (c) a 6-view-visual hull of the sphere. The 3-view visual hull
is computed from three orthogonal views (the UIAIA camera configuration), and its volume is 11.9% larger than the sphere. The
6-view visual hull is computed using the camera configuration of the high throughput, six-camera setup considered in this thesis
(each camera looks onto one of six parallel face pairs of a regular dodecahedron; details are given in Chapter 5), and its volume is
4.5% larger than the sphere. (Visual hull surface regions are coloured to correspond to the camera view for which the surface region
projects to the silhouette outline.)

reason for consistent overestimation of volume by the visual hull. Curiously, the tendency for a visual hull
computed from a finite number of views (three views in the case of the UIAIA) to be larger than the imaged
object (whether convex or nonconvex) is not mentioned as a possible cause for the consistent overestimates
observed in both the experiments with stones and with spheres.

The UIAIA is also used to estimate the ratio a/c (termed the flat and elongated ratio), where a is the longest
diameter of the stone and c is the shortest diameter that is perpendicular to the longest diameter. The longest
diameter, and the diameter perpendicular to the longest diameter is computed for all three views. The largest
of these six diameter values is used to estimate a, and the smallest is used to estimate c. Approximately one
thousand aggregate particles were classified into three classes of a/c: smaller than 3:1, 3:1–5:1, and greater
than 5:1. This was done both manually with a caliper device, and using the UIAIA. The UIAIA is found
to produce more repeatable results than the manual measurements in terms of the proportion of particles in
each class by weight. The class proportions obtained by the UIAIA are found to be in good agreement with
the manually determined classes, but are not quantified.

The UIAIA is also used to emulate sieving. The smallest of the longest diameters from each 3-view image set
is used to predict the sieve class for each particle. The aggregate particles are sieved into five sieve classes
using square-aperture sieves. Plots of histograms from UIAIA sieve emulations are compared with those

obtained from manual sieving and are found to match closely.

The UIAIA has also been used to approximate local shape properties such as the angularity and texture of
stones.
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2.6 Recognising Individual Particles

The academic literature makes few references to the problem of recognising individual particles. The existing
references either are speculative and do not provide quantitative evaluations of proposed methods, or simply
describe the need for particle recognition rather than proposing solutions to the problem. Note, however,
that object recognition is one of the main goals of computer vision, and a wealth of literature exists on the
subject.

In a theoretical paper [127], Taylor proposes to describe the 3D shape of particles by their principal moments.
He states that it is extremely unlikely for two particles to be congruent, and proposes that the principal
moments can be used to uniquely identify individual particles. Several shapes are demonstrated to have
the same sieve size, yet the shapes are uniquely identifiable by their moments. The author aims to test his
proposed formulation using real particles and tomographic shape reconstruction in the future.

In a later paper [126], Taylor points out that it is not easy to “confirm that one has selected a given particle
from a group” and proposes that moments of two voxel representations are used to determine whether or not
the representations correspond to the same particle. For irregular particles, each voxel representation will
have a unique shape if sufficient voxels are used. Taylor and his coworkers currently identify individual rocks
by imprinting a number on each rock. Note that this approach is impractical for smaller stones (such as the
garnets and gemstones used in this thesis), and requires manual identification, whereas this thesis provides
methods to enable automated identification.

Fernlund [41] mentions identifying particles from silhouettes using the intermediate diameter (as described in
Section 2.5.1). This is done to reconcile pairs of silhouettes of the same particle captured from approximately
orthogonal viewpoints. However, no quantitative assessment of the accuracy of this approach is given.

2.7 Reconstruction Techniques Not Based on Silhouettes

Shape-from-silhouette methods are by no means the only methods that have been considered for determining
the 3D shape characteristics of particles. Shape-from-silhouette methods are typically favoured over com-
peting methods because of their low monetary cost, simplicity, and robustness. Other methods may achieve
greater accuracy; for instance, they may be able to model surface concavities whose shape cannot be captured
by silhouettes from any viewpoint.

A few examples of particle shape reconstruction techniques that are not based on silhouettes follow.

Bouguet [13] demonstrates the use of point-based stereo reconstruction of a rock from a turntable sequence

(see Figure 2.8). Using the texture of the rock’s surface, points are tracked across multiple frames and 3D
coordinates are inferred from the points’ 2D image locations. The method is not amenable to high throughput
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Figure 2.8: Rock shape reconstruction. Images are captured as a rock is rotated on a turntable. The top row of images shows 5
of the 226 images used. The camera trajectory and reconstructed 3D points (bottom, left) and triangular mesh model formed with
Delaunay triangulation (bottom, right) are also shown (pictures from Bouguet [13]).

modelling since the rock must be rotated on a turntable, but the 3D models are potentially highly accurate.
The method relies on the rock’s texture for point tracking and is therefore unsuitable for textureless particles.

Erdogan et al. [38] describe the use of X-ray tomography for acquiring 3D particle shape. The particles must
be embedded in a cement-like matrix, and are rotated in front of the X-ray scanner for several hours, so that
multiple slices can be collated to form a 3D shape model. Multiple particles are imaged simultaneously, and
individual particles are segmented from the 3D image. It is important that the matrix have significantly dif-
ferent X-ray absorption properties from the particle. The authors manually measured long, intermediate and
short diameters for three rocks using digital calipers. The maximum discrepancy between the X-ray models

and the manual measurements was 2.6 mm for a longest diameter of 74.5 mm (i.e., an error of approximately
3.5%).

Lanaro and Tolppanen describe an alternative X-ray imaging setup. A cone beam is used (as opposed to
collating slices.) The authors cite greater accuracy and the ability to model the interior of opaque solids as
the reasons for preferring the cone beam approach to slices. Samples of rock particles, glass beads and quartz
sand are demonstrated to have different shape properties in terms of elongation and flatness measured from
3D reconstructions. It is suggested that their method can be used for creating approximate 3D models for
detailed numerical modelling of particulate processes. Since realistic particle simulations typically require a
large number of particles to be considered, it is suggested that simple ellipsoidal models that share volume,
elongation, and flatness properties with the 3D reconstructions be used. This reduces the computational load.

Unlike X-ray tomography methods, laser scanning acquires surface data points one at a time. Lanaro and
Tolppanen [71] describe a laser scanning setup in which the surface of individual stones is scanned with a

laser and viewed by two cameras. Triangulation of the projection of the laser line yields the corresponding 3D
surface coordinates. Since a scan only captures one side of each particle, it must be turned over and rescanned
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to capture the hidden side. To register the two surfaces in a common reference frame, at least three point
correspondences are required. These are determined by gluing three ball bearings to each particle. The centre
points of the balls are identified and used as reference points. Seven railroad ballast particles (32–64 mm)
were reconstructed. The computed volumes differed from the ground truth values (measured manually) with
a greatest underestimate of 5.3% and a greatest overestimate of 3.2%.

2.8 Summary

This chapter has illustrated the broad range of interest in particle shape analysis from many different fields,

and the range of solutions that have been devised to estimate particle shape. This provides the historical
background to the work that is presented in this thesis.

The principal shape features of interest are particle volume, and the long, intermediate, and short diameters.
Many approaches, both silhouette-based and others, have been carried out to estimate these shape features.
Researchers have tried various different approaches to capturing silhouettes from multiple viewpoints (multi-
camera setups, turntables, manual repositioning of particles, perpendicular faced trays).

All the multi-view silhouette-based setups (with the possible exception of the commercial turntable systems
for which explanations of methodology are not available) rely on accurate positioning of the apparatus, rather
than calibration. Calibration is limited to estimating scale so that pixel coordinates may be converted to world
coordinates such as millimetres. This makes the implicit assumption that a weak perspective approximation
is appropriate. This thesis proposes new methods to calibrate multi-view setups so that principled estimates
of particle shape can be made using geometric reasoning, and so that individual particles can be efficiently

and effectively recognised from their silhouettes.

Although silhouette-based particle analysis makes use of concepts that are covered in the computer vision
literature (such as the visual hull), there appears to be little awareness amongst particle analysis researchers
of the shape-from-silhouette research from the field of computer vision.

The problem of individual particle recognition has been mentioned a few times in the particle analysis liter-
ature, but no quantitative studies appear to have been carried out.

Particle shape reconstruction has been attempted with non-silhouette-based approaches. Examples include
X-ray tomography, laser scanning, and stereo reconstruction. Although these systems have the potential to
reconstruct shape more accurately than silhouette-based methods, they tend to be both expensive and slow.

Attention has been paid to computational efficiency for the algorithms presented in this thesis. In practice,
feeding a batch of particles through the six-camera setup (at a rate of ten particles per second) takes more
time than computing the silhouette-based estimates of shape properties, or matching the silhouette sets across
two runs.
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Chapter 3

The Geometry of Silhouette Sets

3.1 Introduction

This chapter overviews the geometry of silhouette sets and introduces important concepts that will be used
in this thesis. First the visual hull, the simple and widely-used method for approximating 3D shape from

silhouettes, is covered. The explanation of the visual hull allows the related concepts of visual cones, cone
strips, frontier points and viewing edges to be introduced.

Next, two concepts that are central to the methods developed in this thesis are covered: (1) the viewing edge
midpoint hull (VEMH) as a means for efficiently estimating the 3D shape of the convex hull of a stone from
its silhouettes, and (2) outer epipolar tangency error (ET error) as a measure of silhouette inconsistency.

The VEMH plays a central role in this thesis. However it is less important than ET error since an obvi-
ous alternative for efficiently approximating 3D shape from silhouettes exists: the visual hull. Efficiently
approximating 3D shape from silhouettes will play a role in the following chapters:

1. In Chapter 6, moments computed from approximate 3D shapes will be used to form an initial pose
estimate between silhouette set pairs of the same stone. The pose estimate is subsequently refined using
ET error. The a, b, and c diameters which are widely used by particle shape analysts (as discussed in
Chapter 2) will then be measured from approximated 3D shapes.

2. Chapter 8 describes a computationally efficient method for computing approximate dissimilarity be-

tween silhouette sets. The method is based on an estimate of the 3D shape of a stone computed from
its silhouettes.

3. Chapter 10, the VEMH will be used to emulate sieve sizing.
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In this chapter, the VEMH is introduced by first demonstrating how viewing edges impose bounds on the
caliper diameter of the corresponding stone. This allows an upper and lower bound to be computed for
the longest and shortest diameter (given a noise-free silhouette set). Next, the VEMH is presented as an
alternative to the visual hull for estimating 3D stone shape from silhouettes.

In later chapters, the ET error will form the basis for developing the following methods:

1. In Chapter 4, the ET error is used to calibrate a mirror-based setup from silhouettes.

2. In Chapter 5, the ET error is used to calibrate a high throughput six-camera setup from silhouettes.

3. Chapter 6 demonstrates how the ET error can be used to infer the relative pose between two silhouette
sets of the same object.

4. Chapter 7 shows how the pose estimation method of Chapter 6 can be used to distinguish two silhouette
sets of the same object (a match) from two silhouette sets of two different objects (a mismatch).

The ET error is introduced by first briefly covering silhouette consistency in general. The ET error, which
is based on the epipolar tangency constraint (a necessary, but insufficient condition for consistency) is then
described.

The methods described in this chapter have been chosen for their simplicity, which leads to efficient compu-
tation. Efficient computation is important for online computations of the high-throughput six-camera setup
that captures image sets at a rate of ten stones per second. Efficiency is also crucial for solving the batch
matching problem for realistic sized stone batches (hundreds to thousands of stones per batch) without mak-
ing use of unreasonably long running times (computing the matching should not take longer than it takes to
feed the stones through the camera setup).

3.2 Visual Hulls

3.2.1 The Visual Hull Concept

The term visual hull was coined by Laurentini [73] in the 1990s, but the use of the largest silhouette-
consistent object as a means for 3D modelling dates back to the work of Baumgart in the 1970s [7]. Lauren-
tini’s initial use of the term visual hull described the largest object consistent with all possible silhouettes,
but the term is now usually used to refer to the largest object that is consistent with a finite set of available
silhouettes [76, 91]. In this thesis, the visual hull is the largest object that is consistent with a given set of
silhouette views. The line hull is the complement of space covered by all lines that do not pass through the
object. Line hull is a term from the field of computational geometry that is equivalent to Laurentini’s visual
hull computed from all viewpoints outside an object’s convex hull [90].
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Figure 3.1: The visual hull concept: (a) a duck viewed by two cameras, (b) two silhouette views of the duck, (c) the two visual
cones associated with the two silhouette views, (d) the visual hull formed from the two silhouette views.

The visual hull concept is illustrated in Figure 3.1. Figure 3.1b shows two silhouette views of a duck (the
object being imaged). Camera centres are represented by small spheres. For convenience, the image planes
are placed in front of the camera centres, and the projected silhouette views are shown non-inverted; for
the purposes of this thesis, such a setup is geometrically equivalent to placing the image planes behind the
camera centres. Visual cones corresponding to each silhouette are shown in Figure 3.1c. A visual cone is the
volume of space that the object cannot lie outside of, given the observed silhouette. The intersection of the
visual cones is the visual hull (shown in Figure 3.1d). The visual hull cannot be smaller than the object. With
two silhouettes, the visual hull is often a poor approximation to the object. However, if further silhouette
views are added, more information about which volumes of space are empty is added, and the visual hull
becomes a better approximation to the object. Figure 3.2 shows visual hulls of the duck formed from three
and from ten cameras. With the additional camera views, more visual cones carve away 3D regions that do
not form part of the object, leaving a closer approximation to the object. Concave surface regions, however,

cannot be reconstructed by the visual hull, since such regions (the interior of a coffee mug, for instance) do
not affect silhouette shape. In a sense, it is the line hull of the object that is approximated by the visual hull.
Fortunately, most particles are well-approximated by their line hulls. In addition, many properties of interest
(such as caliper diameters) have the same value when measured from the object, its line hull, or its convex
hull.
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Figure 3.2: More accurate shape from additional views: (a) visual cones from three silhouette views, (b) visual cones from ten
silhouette views, (c) the visual hull from the three silhouette views, (d) the visual hull from the ten silhouette views.

The surface of the visual hull is made up of surface regions from the visual cones. The part of the visual hull
surface associated with each visual cone is a cone strip. Since this thesis only considers single objects of
genus zero (i.e., objects without holes), each cone strip forms a single ring around the visual hull. At certain
points, the rings are of zero width. These points are called frontier points and are important for the methods
developed in this work. Frontier points are discussed in more detail in Section 3.5. Note that in practice,
camera parameters and silhouettes will not be known exactly (i.e., there will be some degree of noise). This
means that some cone strips will be discontinuous if computed directly from visual cone intersections.

Visual hull approximations have been popular as a relatively simple and robust technique for 3D modelling,
since silhouettes can be easily extracted under controlled lighting conditions. For instance, if diffuse back-
lights are used so that the background appears much lighter than the foreground, then the silhouette can be
extracted using a simple threshold on the pixel intensity values.

28



3.2.2 Computing the Visual Hull

In order to determine the visual hull corresponding to a set of silhouettes, the cameras that produced the
images must be calibrated. This means that the internal camera parameters (such as focal length, principal
point) and the pose must be (at least approximately) known. In this thesis, the term silhouette set is used to
refer to a calibrated set of silhouettes (i.e., the view poses are known in a common reference frame, and the
camera internals are known). Furthermore, the silhouettes will be approximated by polygons. As pointed
out by Lazebnik [75], the use of polygons rather than higher order spline curves allows simpler and more
efficient methods to be developed.

Voxel-Based Approaches

A simple means of approximating the visual hull from a silhouette set is to consider the voxels that tessellate
the common field of view. The size of the voxels will determine the resolution of the computed visual hull.
Only voxels that project into the silhouette foreground in a all views are classified as part of the visual hull.
Other voxels are classified as empty.

The efficiency of the voxel-based method can be improved by using an octree decomposition as described

by Szeliski [123]. Initially, a coarse voxel grid is considered. Any voxel that projects entirely into the
background in any view is classified as empty. Any voxel that projects entirely into the foreground in all

views is classified as visual hull. The remaining voxels are each subdivided into eight smaller voxels that are
then classified as empty, visual hull, or subdivide. Subdivision ceases once a sufficiently high resolution has
been achieved.

Once a voxel representation has been computed, a technique such as marching cubes [84] can be used to
create a polygonal surface. This approach considers all voxels through which the surface passes. (If octree
subdivision is used, these are the smallest voxels.) A surface patch is created for each of these voxels. The
shape of the patch is determined by which of the voxel vertices lie inside the visual hull.

Surface-Based Approaches

A second group of approaches proceed by considering the surface rather than the volume of the visual hull.
This includes some of the original approaches [7] in which constructive solid geometric techniques were
used to directly intersect the visual cones.

Since intersecting general polyhedra is slow, methods have been developed to take into account the specific
geometry of the visual cones, so that they may be efficiently intersected. Matusik et al. [91] make use of
an edge-bin data structure to store edges associated with angular ranges of lines through the epipole. The
method achieves efficiency by computing intersections in 2D: polygonal intersections are first formed in the
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image plane, and then these intersections are intersected with one another on planes defined by facets of the
viewing cones.

Franco and Boyer [48] describe another efficient method for computing polygonal surface models of silhou-
ettes. The first step is to compute the viewing edges from a silhouette set. A viewing line is a line that passes
through a silhouette vertex and its camera centre. Intersecting a viewing line with the visual cones from all
other cameras leaves a viewing edge. The vertices of the viewing edge endpoints are vertices of the visual
hull polyhedron. Franco and Boyer show how the connectivity of these vertices and the remaining surface
points can be determined by using local orientation and connectivity rules to walk along the viewing cone
intersection boundaries.

Several alternative approaches for computing the visual hull are described in the computer vision litera-
ture [17, 76, 85, 125].

It is interesting to note that the convex hull of the visual hull can be computed relatively simply by forming
an intersection of all halfspaces defined by the edges of the silhouette polygons. The plane specifying a
halfspace is formed by the edge and its camera centre. Many efficient halfspace intersection algorithms
exist. For instance, the Quickhull algorithm [5] is of O(n logn) time complexity for n halfspaces. If the
planes are treated as points in dual space, then the duals of the facets of their 3D convex hull specify the
visual hull vertices in primal space.

3.3 Constraints Imposed by Viewing Edges

This section demonstrates that silhouette sets impose both an upper and lower bound on the caliper diameter
in a given direction. These bounds are derived by considering viewing edges.

By considering the upper and lower bounds over all directions, it is possible to compute upper and lower
bounds for the longest and shortest diameter of a stone from its silhouette set. Although estimating the
longest and shortest diameter of a particle from its silhouette set is of interest to particle shape analysts (as
discussed in Chapter 2), it does not appear to have been pointed out that a silhouette set imposes bounds on
these properties.

3.3.1 Bounds on Caliper Diameters in a Given Direction

Since the caliper diameter of a stone in a given direction is the same as that of its convex hull, for simplic-
ity the convex hull of the stone will be considered. The convex hulls of the observed silhouettes are the
projections of the convex hull of the stone.

30



Let the caliper diameter of a stone in direction r be dr. The value dr is the distance between two parallel
support planes that are tangent to and enclose the object (Figure 3.3a). The tangent plane normals are parallel
to r.

The 3D shape of the object is unknown; all that is available is a silhouette set. The upper bound dUr for the
caliper diameter is the largest dr value that can be computed from an object that could have produced the
observed silhouettes. The visual hull provides the upper bound for dr. No greater value is possible, since
if either support plane were moved away from the object, no object would be able to be both tangent to the
support planes and able to produce the observed silhouettes.

The method for computing a caliper interval for a given direction is illustrated in Figure 3.3. The figure shows
the support planes of the actual caliper diameter for a given direction (Figure 3.3a) and three silhouette views
that are used to construct a visual hull (Figure 3.3b). The visual hull is the largest object that is consistent
with the silhouettes. It can be used to compute the largest caliper diameter along the given direction that is
consistent with the silhouettes (Figure 3.3c).

Identifying the lower bound dLr (Figure 3.3d) on dr from the silhouette set is less obvious. The support
planes of dLr must be as close as possible without destroying any cone strips that generate the observed
silhouettes.

Finding the smallest consistent caliper diameter along a given direction is illustrated in more detail in Fig-
ure 3.4. Figure 3.4a shows the visual hull model that is made up of cone strips corresponding to the three
silhouettes. In the noise-free case, the cone strips project exactly onto the corresponding silhouette outlines.
Each cone strip represents the only regions in 3D space that may generate the corresponding silhouette out-

line and remain consistent with all silhouettes. A viewing edge is the portion of a ray through the silhouette
outline that coincides with the corresponding cone strip. Some part of each viewing edge must be tangent
to the object, so that the point on the silhouette outline is generated. No viewing edge can therefore lie out-
side the support planes that contain the object. This provides a means for calculating the smallest consistent
caliper diameter: the support planes must be as close together as possible, without any viewing edge lying
entirely outside the region between the support planes. In Figure 3.4, the upper support plane is limited by
the viewing edges that form the green cone strip (Figure 3.4c): if the support plane were moved any closer,
viewing edges from the green cone strip would lie entirely outside the region between the support planes.
Note that the portion of the visual hull that lies between the support planes generates the observed silhouettes,
and is therefore an example of a silhouette-consistent object with a diameter dLr in direction r.

3.3.2 Bounds on the Longest and Shortest Diameters

Since silhouette sets impose bounds on the diameter in a given direction, it is interesting to note that a sil-
houette set imposes bounds on the longest and shortest diameters (quantities of interest to particle shape
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Figure 3.3: Caliper intervals: (a) the caliper diameter of a stone for a given direction, (b) the available information: three silhouettes
from which a visual hull consisting of cone strips from each silhouette can be constructed, (c) the maximum caliper diameter along
the given direction that is consistent with the silhouette set, (d) the minimum caliper diameter along the given direction that is
consistent with the silhouette set.
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Figure 3.4: Diagram showing (a) the visual hull, and (b–d) the three constituent cone strip components along with the support planes
for the minimum consistent caliper diameter. The example uses the same stone, silhouettes, and caliper direction as Figure 3.3.

32



analysts). The bounds are, however, geometrical bounds and are only valid for noise-free silhouettes. Never-
theless, the bounds provide insight into the inherent (i.e., geometrical) limits of the extent to which longest
and shortest diameters can be computed from silhouette sets.

The upper bound for both the longest diameter and the shortest diameter are simply computed by finding the
longest diameter and the shortest diameter of the visual hull, because no larger shape is consistent with the
silhouettes. Computational geometers have discovered exact solutions for determining the longest diameter
(termed simply the diameter) and the shortest diameter (the width) of arbitrary polyhedra [24, 57]. These
methods can be applied directly to a polyhedral representation of the visual hull to obtain upper bound
values.

Lower bounds for the longest and shortest diameter are approximated by considering an approximately uni-
form dense sampling of directions obtained using subdivisions of an icosahedron [61]. The best solution
from dense sampling is then refined using a conjugate gradient optimiser which makes use of an analytical
expression for the partial derivatives of the lower bound diameters with respect to an azimuth-elevation angle
parameterisation of direction.

An experiment was carried out using synthetic data in which the longest and shortest diameter of a polyhedral
stone model is compared with the bounds computed from its silhouette set. Synthetic silhouettes were
generated using 3-, 4-, 6- and 10-camera setups. To provide viewpoints that are well distributed about the
viewing hemisphere, setups with n cameras are positioned to look onto the parallel face pairs of a 2n-faced
Platonic solid (such setups are described in more detail in Chapter 5). The refined visual hull models of a data
set of uncut gemstones, illustrated in Appendix C (pages 222–224), were used as polyhedral stone models.
The stones were randomly oriented. For each polyhedral stone model, the longest and shortest diameter was
computed. The upper and lower bounds were then computed from silhouette sets of the stone. These bounds
are expressed as a percentage of the actual value. Ideally, lower bounds should be less than 100% of the

true value, and upper bounds should be greater than 100% of the true value, but since the bounds are only
approximated, there are a small number of cases in which this is not true.

Figure 3.5 shows plots of the distributions of bounds for the four different camera setups considered. To aid
comparison, the upper half of each sub-plot shows distributions for the bounds on the smallest diameter, and
the lower half of each sub-plot shows distributions for the bounds on the longest diameter. As the number
of cameras is increased, the bounds move closer to 100%. This is because the additional views place tighter
constraints on the range of possible values. Notice that the bounds on the longest diameter are closer to
100% than those on the shortest diameter, indicating that there is less uncertainty on its value. Interestingly,
the plots indicate that the longest diameter is better approximated by its lower bound, whereas the shortest
diameter is better approximated by its upper bound.
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Figure 3.5: Distributions of bounding values computed from silhouette sets as specified as a percentage of the actual values.
Silhouette sets were computed from the 1423 polyhedral stone models illustrated on pages 222–224.

3.4 Viewing Edge Midpoint Hulls for Approximating Shape

The viewing edge midpoint hull (VEMH) is proposed as an alternative to the visual hull for approximating
the 3D convex hull of a stone from the 2D convex hulls of its silhouettes. The VEMH is the convex hull of
the midpoints of all viewing edges. The silhouette projections of the VEMH are the same as the convex hulls
of the observed silhouettes in the noise-free case, so the VEMH is a silhouette-consistent object.
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3.4.1 Advantages of the VEMH

Use of the Convex Hull

The approach taken in this thesis is to attempt to reconstruct the 3D shape of the convex hull of a stone

from its silhouettes rather than the possibly nonconvex shape of the stone. Using convex hulls simplifies
computations and allows for 3D shape to be approximated more efficiently than if nonconvex shapes are
considered. This approach is useful in two contexts:

1. Since the caliper diameter of a stone in a given direction is the same as that of its convex hull, the
VEMH can be used to estimate caliper diameters. This will be done for both estimating the short,
intermediate, and long diameters of a stone and for estimating a caliper diameter distribution to aid
recognition.

2. Since the principal axes of the convex hull of a stone can be used to specify its pose with respect to
some reference frame, the VEMH is used to approximate the pose of a stone from its silhouette set.
This provides an initial pose estimate that will be used to align silhouette sets of the same stone in a
common reference frame.

Comparison with the Visual Hull

The aim of the VEMH is to provide a more accurate estimate of the 3D shape of stones from silhouettes than
the visual hull.

Visual hulls often have sharp edges where cone strips meet. Although geometrically the visual hull could
be the object that generated the silhouettes, more often the sharp edges are artefacts that do not exist on the
actual object. Unless by chance a stone’s surface is tangent to the cone strip near the regions where cone
strips meet, the volume of the visual hull near the cone strip intersections and far from the frontier points is
not shared by the stone.

In general, an object will be tangent to the viewing edge at one point along the viewing edge. Using the
visual hull to approximate stone shape considers the stone to be tangent to the entire viewing edge (this is
an extremely unlikely coincidental alignment of the stone). Since stones are not in general smooth, no use

of the silhouette curvature is used for interpolation, and the midpoint of the viewing edge is simply used as
the point of tangency for the shape approximation. The convex hull of the midpoints is used as the shape
approximation. Although additional volume could be incorporated into the shape approximation, this is not
done for two reasons:
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1. Since the VEMH is silhouette-consistent, the silhouettes do not provide any evidence of the presence
or absence of additional volume. One would have to make use of a priori knowledge of shape. Since
stones are irregular in shape there is no obvious a priori knowledge to incorporate.

2. To a certain extent, many stone surfaces consist of low-curvature regions (flattish faces) that are joined
by high curvature regions (edges). Since the stones are arbitrarily oriented with respect to the cameras,
high curvature regions are most likely to form contour generators, with the flatter regions in between.
This parallels with the VEMH in which rims are joined by flat faces, and is unlike the visual hull in

which the volume extends to the limit of silhouette consistency.

Figure 3.6 illustrates the differences between visual hulls and VEMHs. Note that the much of the visual
hull volume in the regions where cone strips meet, and which is absent in the VEMHs, is also absent in the
original stones.

3.4.2 Alternative 3D Shape Estimates from Silhouette Sets

Several other approaches are described in the literature for estimating the 3D shape of an object from its
silhouettes. The main advantage of the VEMH over these methods is it computational efficiency (how this is
achieved is described in Section 3.4.3) and its simplicity.

Visual Shapes

Franco et al. [49] introduce a family of silhouette-consistent 3D objects that they term visual shapes. Their
approach is similar to the VEMH in that a portion of the viewing edges is included to ensure silhouette con-
sistency. Three approaches for selecting portions are suggested: (1) thinning the viewing edges, (2) selecting
a single random contact point, and (3) choosing the contact point corresponding to a local order 2 surface.
Of the three approaches, the VEMH is most similar to the second. However, the VEMH approach makes
use of the midpoint instead of a random contact point. Compared with the random approach, the midpoint
approach reduces by a factor of two the maximum possible distance between the actual contact point and
the assumed contact point. (Despite the similarity between the VEMH and visual shapes, the VEMH was
developed independently and prior to the publication of the visual shapes.) To determine a polyhedron from
the visual shape points, Franco et al. compute the Delaunay tetrahedrisation of the points, and then carve
tetrahedra that project outside any silhouette.

Dual-Space Approaches

Another approach to approximating 3D shape from silhouettes is to represent tangent planes to the object
(that are defined by the silhouette outlines) as points in dual space, and then to estimate the dual surface of
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Figure 3.6: Visual hulls and VEMHs generated from three orthogonal silhouette views of stones. The first row (a–c) shows three
stones. The second row (d–f) shows the 3-view visual hulls computed from 3-view silhouette sets of the above stones. The visual
hull surfaces are coloured according to the cone strips that they are made up from. Viewing edge midpoints are shown as small
spheres. The third row (g–i) shows the rims of the VEMHs. These are the loci of the viewing edge midpoints; it is the rims that
generate the silhouette outlines (i.e., the silhouette outlines are projections of the rims). The fourth row (j–l) shows the VEMHs: the
convex hulls of the viewing edge midpoints.
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the object [17, 68, 80]. However, as pointed out by Franco et al. [49], these approaches do not enforce the
constraint that other silhouettes limit the position of tangency on the viewing line (i.e., the tangency must
occur on a viewing edge, rather than anywhere along a viewing line); these approaches are therefore unsuit-
able for sparse silhouette sets in which the viewpoints are well-distributed (as is the case for the silhouette
sets considered in this thesis.) In addition, the dual-space approaches assume that surfaces can be locally
modelled with a quadric; this approach is unlikely to work well with stones, since they are not in general
smooth.

Nevertheless, it is noted that a dual-space approach may yield a good solution to the problem of estimating the
convex hull of a stone from its silhouette set. The tangent envelope corresponding to the convex polygonal
representation of each silhouette boundary is a planar convex polygon in dual space [110]. (The tangent
planes at the crossing points of these planar convex polygons correspond to frontier points in primal space.)

The convex hull of these polygons corresponds to the visual hull in primal space. (This arises from the duality
between halfspace intersections in primal space and convex hull in dual space.) This approach provides two
useful properties:

1. Points may be added in dual space (to the original points that are the vertices of the planar convex
polygons). The convex hull of all points corresponds to a polyhedron in primal space that is a carved
version of the original visual hull. Ensuring that all points lie on the surface of the convex hull in dual
space ensures that the corresponding primal space polyhedron is silhouette-consistent (i.e., it generates
the observed silhouettes). Convexity preserving interpolation of the planar convex polygon vertices

may therefore provide a smooth silhouette-consistent shape.

2. Since the convex polygons corresponding to each silhouette are planar, methods for interpolating cross
sections [9] may provide a means for computing a smooth silhouette-consistent shape.

Radial Basis Functions

As with the VEMH, Collings et al. [29, 30] impose the restriction of approximating the 3D shape of convex
objects from convex silhouettes. They approximate a convex solid from its silhouettes by fitting implicit
radial basis functions. This is achieved by computing the positions of frontier points, which are assumed
to lie on the surface, and by incorporating local curvature at frontier points. The method relies on the solid
being sufficiently smooth that local curvature can be used to interpolate the surface regions between frontier
points, and is therefore not applicable to stones, for which this assumption is not generally valid. Unlike the
VEMH approximation, the method does not enforce the constraint that the object is tangent to the viewing
edge interval on each viewing line. The reconstructed shape is therefore not constrained to be silhouette-
consistent as it is not constrained to lie within the visual hull.
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Triangular Spline Models

Sullivan and Ponce [121] describe a method in which triangular spline models are used to approximate the
3D shape of an object from its silhouettes. The spline model is deformed using an iterative minimisation of
the average distance between the surface and viewing lines defined by the observed silhouette set.

The Constant Depth Rim Hull

Possibly the simplest and most efficient estimate of 3D shape from multiple silhouettes is the constant depth
rim hull (CDRH). Marr [88] speculates that the human visual system may infer 3D shape from silhouettes
by assuming that the rim (contour generator) is planar (i.e., constant depth). (This is however disputed in
a later article by Koenderink [69]). Regardless of whether or not the human visual system may infer shape
by assuming planar rims, the assumption of planar rims provides a simple and computationally efficient
means for approximating the 3D shape of stones from multiple silhouette views. First the object depth is
approximated by triangulating the centres of each silhouette to provide an approximate centre point. The
polygonal silhouette boundaries are then backprojected to the depth of the centre point to form planar rims
at that depth. The convex hull of the planar rims is the CDRH. Note that although the CDRH is used to
approximate 3D shape, it is not necessarily silhouette-consistent: although the planar rims ensure that the
CDRH projections are sufficiently large to cover the silhouettes, the projections may be larger than the
silhouettes.

Assuming constant depth rims for approximating 3D shape does not appear to have been used for stones, but
has been used for other objects such as fruit [67].

The CDRH is introduced in this thesis mainly to justify the additional complexity used in computing the
VEMH. The CDRH and the VEMH are similar in that both compute a rim for each silhouette in the silhouette
set. (The rim projection is the corresponding silhouette outline.) The CDRH and the VEMH differ in
that CDRH rims are of constant depth, whereas VEMH rims may vary in depth. To justify the additional
complexity of the VEMH it will be demonstrated that it provides more accurate estimates of 3D shape (for
the tasks relevant to this thesis) than the CDRH.

Figure 3.7 shows an example that shows the VEMH and CDRH computed from three orthogonal silhouette

sets of convex stones.

3.4.3 Computing the VEMH

The VEMH is computed by considering, in turn, the viewing line passing through each vertex of the polygons
representing each of the silhouettes in the set. Each remaining silhouette in the set (i.e., the silhouettes other

than that of the viewing line under consideration) is used to identify segments of the line that the object may
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Figure 3.7: Estimating convex shape with rims using the VEMH and the CDRH. The first column shows the rims generated by
a 3-view silhouette formed from three orthogonal cameras. Rims are shown with (above) and without (below) the imaged stone.
The second column shows rims calculated using the viewing edge midpoints that are computed using the 3-view silhouette set. The
convex hull of the midpoints (the VEMH) is also shown. The third column shows rims that are calculated by backprojecting the
silhouette boundaries to a constant depth that is determined by triangulating the three silhouette centroids. The triangulated point
that defines the constant depth is shown in purple. The convex hull of the constant depth rims (the CDRH) is also shown. Note that
some portions of the constant depth rims lie within the CDRH indicating that it is not silhouette-consistent.

lie within. The intersection of all of the segments is the viewing edge. The convex hull of all viewing edge
midpoints is the VEMH. For computing caliper diameters of the VEMH, it is not necessary to explicitly
compute the convex hull of the midpoints, as the caliper diameter of the 3D point set (consisting of all
viewing edge midpoints) can be used instead of a polyhedral representation of the VEMH.

Viewing Line Projections

To identify the segment of the viewing line that a silhouette does not imply as being empty, the viewing line
is projected onto the silhouette. This is illustrated in Figure 3.8 in which the viewing line corresponding to

vertex m is under consideration.

The viewing line passes through the points C1 (the camera centre of Camera 1), P1, M, and P2 in the figure.
Its projection is easily computed by projecting C1 and m on to Camera 2’s image plane. The viewing line
projection is illustrated by the line passing through e21 (an epipole: Camera 1’s projection onto Camera 2’s
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Figure 3.8: Computing a viewing edge from two convex silhouette views. Lines are represented as thin cylinders and points are
represented as small spheres to aid 3D visualisation. The point M is the viewing edge midpoint.

image plane), p1 and p2. The points p1 and p2 are the points of intersection of Polygon 2 with the viewing

line projection. Since the polygons are convex, there can be at most two such intersection points. Because
of noise, there may be no intersection points in some cases.

Precomputed Edge-Bin Data Structures

An edge-bin data structure is precomputed for each silhouette-epipole pair. The edge-bin data structure
allows the intersections of a viewing line projection through the epipole and the silhouette to be rapidly
computed.

The edge-bin data structure is computed in a similar means to the one described by Matusik et al. [91].
However, since only convex silhouettes are used, it can be populated using a simpler algorithm.
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First, bin boundaries are determined by sorting the polygon vertices according to the angle made with the
epipole and an arbitrary fixed reference line. The implementation uses a line through the first vertex and the
epipole as a reference line. An example is given in Figure 3.9: the six vertices of the polygon give rise to
five bins.

./figures/shape/EdgeBin.eps

Figure 3.9: An example of a silhouette and epipole with edges and bins shown. The bin contents are listed in Table 3.1.

Each bin must store the edges that a line through the epipole whose angle falls into the bin’s angular range

will intersect. Since the polygon is convex, each bin will contain exactly two edges. This makes populating
the bins easy.

The bins are traversed in order, and the polygon is traversed simultaneously, starting from the vertex with
the smallest angle (θ1 in the example). The current edge is added to the current bin if it falls within the bin’s
range, otherwise the current edge is updated by moving to the next edge (i.e., moving to the edge that shares
a vertex with the current edge). Once the vertex with the largest angle is reached, each bin will contain one
edge. The process is then reversed (the bins are traversed in reverse order) to add the second edge to each
bin.

Table 3.1 shows the edges contained by each bin in the example.
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Bin Range Edges
b1 θ1 – θ2 e1, e2
b2 θ2 – θ3 e1, e3
b3 θ3 – θ4 e6, e3
b4 θ4 – θ5 e6, e4
b5 θ5 – θ6 e6, e5

Table 3.1: An example edge-bin data structure formed from the silhouette and epipole shown in Figure 3.9.

Intersections between the Viewing Line Projection and the Silhouette

Once the edge-bin data structure has been built, intersections can be computed efficiently. The angle of the
viewing line projection is computed with respect to the reference line. This is used to determine the bin
that contains the edges that intersect the viewing line projection. If the angle lies outside the range of all of
the bins, then there is no intersection. Note that since the viewing line projections correspond to a polygon
that is being traversed in another view, the appropriate bin is usually close to the most recently visited bin.
This means that for B bins, lookup is of constant time complexity, rather than an O(logB) search, when the
viewing line projections are processed in order.

It is possible that the following approach (not implemented) may further improve the simplicity and effi-
ciency of the algorithm. Instead of forming edge-bin data structures, the intersection edges are determined
by starting with the most recently intersected edge. Since the projected viewing lines are computed in order,
the relevant edge will be found close to the most recently intersected edge, and the entire polygon need not
be traversed. In other words, the silhouette polygon and the polygon that generates the viewing lines are
traversed simultaneously.

Projecting Segments onto the Viewing Line

Once the intersection points p1 and p2 are known, they must be projected onto the viewing line to P1 and P2.
To easily compute the intersection of line segments specified by different silhouettes, the points are specified
as P1 = C1 +d1V̂, where V̂ = (C1−m)/‖(C1−m)‖ so that d1 is the distance along the viewing line from C1

to P1.

The viewing edge is then computed as the intersection of all intervals as indicated by all silhouettes other
than the silhouette corresponding to the viewing line. Because of noise, some interval intersections may
be empty; in these cases the viewing line does not contribute a midpoint to the VEMH. (Figure 3.8 shows

point M as the midpoint of the viewing edge specified by the two silhouettes for the viewing line under
consideration.)
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3.5 Measuring Silhouette Consistency

A consistent silhouette set is one that could have been produced as the silhouette projections of a 3D object.
Geometrically, a silhouette set of an object is consistent if the intersection of the visual cones corresponding
to each silhouette projects exactly onto the silhouettes. This is the cone intersection projection (CIP) con-
straint. It is a sufficient condition for consistency, since the cone intersection is an example of a 3D object
that produces the silhouette set. It is also a necessary condition, since any portion of a silhouette that is not
covered by the cone intersection projection provides contradictory information: the uncovered portion of the
silhouette indicates that the corresponding viewing rays are occluded by an object, whereas the remaining
silhouettes in the set indicate that the 3D region corresponding to these viewing rays is entirely empty.

Real silhouette sets are noisy: there will always be error associated with the camera parameters and the
segmented silhouette boundaries. Real silhouette sets will therefore not, in general, be perfectly consistent.
It is therefore useful to formulate a measure of the degree of inconsistency of a silhouette set.

The concept of a degree of inconsistency for a silhouette set is an important concept for this thesis:

1. By adjusting camera parameters to minimise the degree of inconsistency, cameras can be self-calibrated.

2. The degree of inconsistency can be used as a diagnostic to ensure that cameras have not been moved
or adjusted since calibration. (Although this thesis does not analyse this diagnostic, it formed a useful
tool during the data acquisition phase of the thesis project.)

3. It will also serve as a means for inferring whether two silhouette sets were produced by the same
stone (a match): if a relative pose can be found to align the two silhouette sets so that the degree of
inconsistency is sufficiently low, then the two silhouette sets are classified as a match.

This thesis makes use of a degree of inconsistency based on outer epipolar tangents and the epipolar tan-
gency constraint. The use of epipolar tangencies for silhouette-based pose optimisation was first considered
by Grattarola [54]. The method provides a computationally efficient means of obtaining pairs of point corre-
spondences whose reprojection error provides a measure of inconsistency [138].

Other measures of silhouette consistency such as the silhouette coherence of Hernández et al. [39, 60] and
the silhouette calibration ratio of Boyer [14, 15] use more information contained in the silhouettes, but
are computationally inefficient. These measures are therefore not of primary importance for the methods
developed in this thesis. However, they will be considered in the context of matching in Chapter 7.

3.5.1 The Epipolar Tangency Constraint

The epipolar tangency constraint is a geometrical constraint that applies to pairs of silhouette views (with as-
sociated pose and internal parameters): a line that is tangent to one silhouette and passes through the epipole
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must project onto a silhouette tangent in the opposite image. With reference to an example (Figure 3.10),
this section describes how the epipolar tangency constraint can be expressed in terms of the silhouettes and
the camera pose and internal parameters.
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Figure 3.10: Two views of the epipolar geometry of a scene: (a) a front view, and (b) a side view looking onto the scene in a
direction parallel to the baseline.

Figure 3.10 shows the same scene as shown in Figure 3.1, along with some additional points and planes. The
line joining the two camera centres C1 and C2 is called the baseline. It pierces the image plane of Camera 1
at e12 and the image plane of Camera 2 at e21. The points e12 and e21 are epipoles. In the figure, the epipoles
are represented as small circles (projections of spheres) on the image planes.

The two planes π0 and π1 that pass through the baseline and are tangent to the duck are shown. Provided that
the baseline does not pass through the object, there will be two such planes for any object. The points P0

and P1, where the planes touch the object’s surface, are frontier points. Since the planes pass through both
camera centres and graze the surface of the object, the frontier points project onto the silhouette boundary
in both views. The projection of a frontier point is the tangency point of a silhouette tangent that passes

through the epipole. A projection of a frontier point is therefore termed an epipolar tangency. The epipolar
tangencies p120 and p210 are projections of P0, and p121 and p211 are projections of P1. (The notation pi jk

is used so that i indicates the number of the camera whose image plane the point lies on, j indicates the
number of the other camera of the silhouette pair, and k indicates to which of the two frontier points pi jk

corresponds.)

The intrinsic geometry between the views i and j is encapsulated by the 3×3 fundamental matrix F ji [58]. If
xi represents the homogeneous coordinates of an image point from view i, and x j represents the correspond-
ing point in view j, then xi is constrained to lie on the line F jix j in view i so that

xT
i F jix j = 0. (3.1)

If the relative pose between view i and view j is described by a rotation represented by the matrix R followed
by a translation represented by the vector t that transform points from the reference frame of camera j to the
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reference frame of camera i, then an essential matrix can be computed using

E ji = [t]×R. (3.2)

The antisymmetric matrix [t]× is computed from the translation vector t = [tx, ty, tz]T using

[t]× =




0 −tz ty
tz 0 −tx

−ty tx 0


 . (3.3)

The essential matrix can therefore easily be computed for a given known pose. The fundamental matrix can
be computed from the essential matrix:

F ji = K−T
i E jiK

−1
j (3.4)

where the K matrices store the internal parameters for cameras i and j so that

K =




f 0 u0

0 f v0

0 0 1


 , (3.5)

for focal length f and principal point (u0,v0). This camera model assumes that pixels are square.

Figure 3.11 shows the epipolar tangents for each silhouette image of the duck example. Each line lies in
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Figure 3.11: The epipolar tangency constraint: the epipolar tangent touches the silhouette at the projection of the frontier point, as
shown in (a) and (b); the projection of this tangent onto the image plane of the opposite camera is constrained to coincide with the
opposite epipolar tangent.

a tangent plane containing a frontier point, and therefore must project onto the corresponding line in the
opposite image: this is the epipolar tangency constraint. In other words, in the noise-free case, the line
passing through ei j and pi jk is the same line as F jip jik.
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3.5.2 A Measure of Inconsistency Based on Epipolar Tangents

If there are inaccuracies in the silhouettes or the pose, then the line passing through ei j and pi jk will not, in
general, be the same line as F jip jik. Figure 3.12 shows the noisy case in which there are inaccuracies in the
assumed relative pose between the cameras. Note that the epipoles are positioned differently to Figure 3.11,
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Figure 3.12: Epipolar tangents with the projection of the epipolar tangents of the opposite view and incorrect pose information:
since the pose information is incorrect, the epipolar tangents do not project onto one another. The silhouettes are inconsistent with
one another for the given viewpoints. The reprojection error is a measure of the degree of inconsistency.

since the pose is incorrect. The projection of the opposite camera’s epipolar tangent is not exactly coincident
with the epipolar tangent on the image plane. Reprojection errors can be computed as a measure of the
inconsistency between a pair of silhouettes with an associated pose value. The reprojection error is the
shortest distance from an epipolar tangency to the epipolar line of the corresponding point in the opposite
image. The figure shows the reprojection errors d120, d121, d210 and d211.

The distance di jk between an epipolar tangency pi jk and the projection of the epipolar line from the opposite

camera that passes through the tangency point p jik can be computed using the fundamental matrix, as stated
by Wong [138]:

di jk =
pT

i jkFi jp jik√
(Fi jp jik)2

1 +(Fi jp jik)2
2

. (3.6)

The expressions (Fi jp jik)2
1 and (Fi jp jik)2

2 denote the first and second elements of the vector (Fi jp jik)2. Note
that pi j0 and pi j1 are vertices of the polygon representing the silhouette.

Wong’s definition of the reprojection error described by Equation 3.6 is related to the Sampson approxima-
tion [58] that provides an estimate of the locations of two projections of a point from two noisy observations.
The Sampson approximation of the location of the frontier point projection is midway between the epipolar
tangency and the projection of the opposite epipolar tangent. An alternative formulation that measures the
distance to the Sampson approximation from the epipolar tangency (or from the projection of the opposite
epipolar tangent) gives exactly half the value given by Equation 3.6. Yamazoe et al. [141] describe a method
in which the locations of 3D points are explicitly modelled. However, results are not compared with the con-
ventional method of using an error function based on Equation 3.6. Some initial experimentation indicated
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that the method of Yamazoe et al. provides results that are almost identical to the those obtained with the
conventional approach for the camera setups covered in this thesis. Hartley and Zisserman [58] recommend
using the Sampson approximation, since it gives excellent results in practice and removes the requirement
for 3n parameters to describe the locations of n frontier points.

A measure of inconsistency within a silhouette set is the RMS (root mean square) value of all reprojection
errors (as specified by Equation 3.6) computed using all silhouette pairs within the silhouette set. This is
referred to as the ET (epipolar tangency) error within the silhouette set, and is used for calibration (Chapters 4
and 5).

For two silhouette sets and an associated relative pose, a measure of inconsistency across the silhouette sets
is the RMS value of all reprojection errors computed across all silhouette pairs in which one silhouette is
from each silhouette set. This is referred to as the ET error across the silhouette sets, and will be used to
optimise relative pose (Chapter 6).

This thesis makes use of the Levenberg-Marquardt [95] method to infer model parameters by adjusting the
parameter values to minimise ET error. This approach is used in several contexts through the thesis.

3.5.3 Epipoles Inside Silhouettes

In cases in which the epipole falls within a silhouette, the ET error is not defined for the silhouette-epipole
pair. Epipoles lie within silhouettes when the baseline passes through the object.

Interestingly, a configuration in which baselines connecting viewpoints all pass through the object allow
consistent viewpoints to be specified for arbitrary single contour silhouettes. This is done by positioning
all viewpoints on a line so that the line passes through all silhouettes. By ensuring that the viewpoints are
sufficiently far apart, no silhouette will destroy the cone strip from any other silhouette; the visual cone inter-
section thus provides an object that exactly projects onto all silhouettes. Figure 3.13 shows an example using
shapes considered by Bottino and Laurentini, who challenge readers to determine consistent orthographic

views for three silhouettes: a square, a circle, and a triangle [11]. If the projection model is broadened from
an orthographic model to a perspective model, then consistent viewpoints can be found for the three shapes
(and indeed any number of single contour silhouettes), simply by selecting viewpoints sufficiently far apart
on a common line that passes through the silhouettes.

The problem of the existence of trivial solutions, such as the one illustrated in Figure 3.13, is not an issue
for the methods considered in this thesis, since silhouette consistency is never considered in cases in which
the pose of individual silhouettes can be freely adjusted. In the cases in which poses are freely adjusted,
either (1) multiple silhouettes correspond to each camera view, or (2) the pose of a silhouette set, rather than
a single silhouette, is adjusted.
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Figure 3.13: (a) A 3D shape with square, circular and triangular silhouettes from certain viewpoints. If viewed looking onto its
triangular face from afar, the silhouette boundary is a square as shown in (b). As the viewpoint is moved towards the triangular face,
the silhouette boundary begins to change to become more circular (c), until the boundary is a circle (d), and then becomes more
triangular (e), until the viewpoint is sufficiently close to the triangular face that the silhouette is a triangle (f).

Nevertheless, it is still possible to obtain cases in which parameters are adjusted so that the epipole lies
within a silhouette for certain view pairs. To prevent the number of residual values from changing within a
Levenberg-Marquardt step, these cases are identified, and a residual value is chosen so that the mean square
value over all epipole-outside pairs is the same as the mean square value of all residuals. To ensure efficiency,
cases in which the epipole lies within the axis-aligned bounding rectangle of a silhouette are treated as if the
epipole lies within the silhouette.

3.5.4 Efficiently Locating the Epipolar Tangencies

Computing the ET error requires the polygon vertices that are tangencies to be located. Since only outer
tangencies are used, they are computed from the convex hulls of the polygonal silhouette boundaries. Con-
vex hulls are efficiently computed from the boundaries using Melkman’s algorithm [92] which has a time
complexity of O(n) for n-vertex polygons. It achieves its efficiency by assuming that input vertices lie on

a non-self-intersecting polygon, rather than in general positions. Note that convex hulls need be computed
only once for each silhouette, whereas tangencies need to be computed repeatedly when pose or camera
parameters are adjusted within an iterative minimisation of ET error. This is why it is important to locate the
tangencies efficiently.

A simple method for locating the two outer tangencies with respect to an epipole and a convex polygon is to
visit each vertex and to check whether the edges arriving and leaving the current vertex are on the same side
of the line through the current vertex and the epipole. If this is the case, then the current vertex is a tangency.
Unfortunately, this simple method is computationally inefficient.
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x≤ 0 y > 0 v = g−1 −∞ < v <−1
x≤ 0 y≤ 0 v =−1/(1+g) −1≤ v≤ 0
x > 0 y≤ 0 v = 1/(1−g) 0 < v≤+1
x > 0 y > 0 v = g+1 +1 < v≤+∞

Table 3.2: Lookup value v as a function of x, y and g = y/x, where x and y are the vertex coordinates.

To speed up the location of tangencies, a method based on storing the edge angle associated with each vertex

is proposed. (The edge angle is the angle of the vector from each vertex to its successor—the edges are
directed and polygons are assumed to have vertices specified in anticlockwise order.) The method is appli-
cable to ET error computed using both orthographic and perspective camera models, but the implementation
is slightly different for the two camera models. Since the use of an orthographic camera model will be in-
vestigated in Chapter 7, locating tangencies with both orthographic and perspective models will be covered
here.

Forming the Edge Angle Data Structure

A monotonic function of angle is computed and stored as this avoids calls to the relatively computationally
expensive arctan function. A monotonic transform of the angle is sufficient as angle values are only used for
ordering edges.

The monotonic function of angle is computed using the equations presented in Table 3.2. The same approach
was used for efficiently computing viewing edges.

The lookup value v of the successor edge for each vertex is stored in a sorted associative container ( the C++

map data structure was used). This allows angle values to be accessed in O(logn) complexity for an n-vertex
polygon. Since n is small (the order of 100), a hashing approach which would allow O(1) access was not
used. (The O(logn) retrieval was found to make a negligible contribution to total running time in practice.)

Orthographic Imaging Model

In the orthographic case, the epipole is a direction, rather than a point. To determine the first tangency,
a vertex must be found whose predecessor edge angle is less than the angle of the epipolar direction, and
whose successor edge angle is greater than the angle of the epipolar direction. If the angle of the epipolar

direction is greater than or smaller than all of the stored angles, then the relevant vertex is the vertex whose
edge angles correspond to the greatest and smallest angles (this is caused by the discontinuity of v between
−∞ and +∞). The located vertex is a tangency, since its two edges lie on the same side of the line specified
by the vertex and the epipolar direction.

The second tangency is located by applying the same procedure to the direction opposite to the epipolar
direction.
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Perspective Imaging Model

The above method relies on the tangent direction being known in advance: it is the same as the epipolar
direction. In the perspective case, the epipole is not a direction, and the tangent direction is therefore not
known in advance. Instead, an approximate direction is computed as the direction from the epipole to the
silhouette centroid. If the epipole is sufficiently far from the silhouette, this will lead to the correct vertex
being located. However this is not guaranteed.

The located vertex must therefore be checked to determine whether it is a tangency. This is done by checking
whether its two edges lie on the same side of the line passing through the vertex and the epipole.

If the vertex is not a tangency, then the direction from the epipole to the vertex is used to find the next
candidate. The candidate direction therefore rotates clockwise until the tangency is found. Typically, the
tangency is found on the first iteration, but in cases where the epipole is close to the silhouette more than one
iteration may be required. An example is shown in Figure 3.14.

./figures/shape/AngleMapBase1.eps

(a)

./figures/shape/AngleMapBase2.eps

(b)

Figure 3.14: Clockwise rotation of the candidate direction for finding the tangency: (a) the initial candidate direction from the
epipole e to the silhouette centroid c; the located vertex a is not a tangency, so it is used to define the candidate direction for the next
iteration, (b) the located vertex b is a tangency, so the algorithm terminates.

Note that the tangency is always located, since the current candidate direction always locates a candidate
vertex that is further clockwise than the vertex that specifies the direction. For any direction there are two
tangencies: one to the left and one to the right. Since the polygon vertices are ordered anticlockwise, the
rightmost tangency will always be selected. This is because the range of directions between the edges arriving
and leaving the rightmost tangency vertex includes one that is parallel to the current direction, whereas the
range corresponding to the leftmost tangency vertex includes one that is antiparallel. Since, from the point of
view of the epipole, a step to the right is always a clockwise turn (since the epipole is outside the silhouette),
the tangency will always be located.
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./figures/shape/LeftRightTangencies.eps

Figure 3.15: Two outer tangencies: pL has a greater angular extent to the left (anticlockwise) and pR has a greater angular extent to
the right (clockwise) with respect to the epipole.

The second tangency is located by computing direction vectors from the silhouette to the epipole, rather than
from the epipole to the silhouette as is used to locate the first tangency.

3.5.5 Determining Tangency Correspondences

To compute the ET error it is necessary to know which of the two outer tangencies in one image of a pair
corresponds to which outer tangency in the other pair.

The literature mentions two approaches to solving the correspondences: (1) the correspondence that leads
to the lowest ET error is selected [54], or (2) correspondences are determined by knowing that cameras are
always upright: one pair will occur at the top of the image and another pair at the bottom [60].

Since there is no prior knowledge of what is upright for the camera views considered in this thesis, this
constraint cannot be used to determine correspondences.

Instead of determining correspondences by selecting the pair with the lowest ET error, this section demon-
strates that epipolar tangency correspondences can be determined by considering the camera poses alone.
This provides a simpler algorithm.

A Method for Determining Correspondences

Figure 3.15 illustrates the two epipolar tangencies computed from a silhouette and an epipole. From the point
of view of the epipole, one of the tangencies pL will have a greater angular extent to the left (anticlockwise)
and the other tangency pR will have a greater angular extent to the right (clockwise). An alternative definition
is that the epipole lies to the right of silhouette normal at pR, and to the left of silhouette normal at pL.
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Let the tangencies from the first image be pLA and pRA, and those from the second be pLB and pRB. If exactly
one camera is behind the other camera (i.e., if one camera’s z coordinate specified in the other camera’s
reference frame is less than zero), then the correspondences are (pLA, pLB) and (pRA, pRB). If both cameras
are facing each other or if both cameras are behind one another, the correspondences are (pLA, pRB) and
(pRA, pLB). Examples illustrating the different configurations are shown in Figure 3.16.

Since orthographic cameras are at infinity, they are never behind one another, and the correspondences are
therefore (pLA, pRB) and (pRA, pLB).

An Explanation of the Method

Consider a frontier point P that is generated by Cameras A and B. The surface normal of the frontier point is
used to define the up direction, so that it can be specified whether a camera lies to the left or to the right of a
line passing through the other camera and the frontier point. Figures 3.17a and 3.17b illustrate points in the
plane containing A, B and P. In this case, A lies to the right of the line PB, as the normal at P is facing out of
the page.

If Camera B is oriented so that A is in front of Camera B (as illustrated in Figure 3.17a), then the epipole eBA

(the image of A) is on the same side of pB (the image of P) as A is of P. (In the example illustration, it is
to the right). This is because both P and A are in front of Camera B. The point P is always in front of both
cameras, since it is visible to both cameras.

If Camera B is oriented so that A is behind Camera B (as illustrated in Figure 3.17b), then the epipole eBA

(the image of A) is on the opposite side of pB (the image of P) as A is of P. This is because the ray from A

comes from behind Camera B and strikes the image plane from behind.

The handedness of an epipole with respect to the tangency is used to specify the handedness of the tangency.
This is illustrated in Figures 3.17c and 3.17d. In the case of Figure 3.17c for example, the relevant epipole is
pB = pR, the tangency for which pB lies to the right of the epipole.

./figures/shape/BothBehind.eps

(a)

./figures/shape/InFrontBehind.eps

(b)

./figures/shape/BothInFront.eps

(c)

Figure 3.16: Examples illustrating (a) two cameras each behind the other, (b) one camera behind and one camera facing, (c) two
cameras both facing the other. Dashed lines represent each camera’s z = 0 plane and arrows specifying the camera directions depart
from the camera centres and lie on the optical axes. In all cases, the external scene point P is visible to both cameras.
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Figure 3.17: Camera A is to the right of B with respect to the line PB and with the normal to frontier point P facing upwards (out of
the page): (a) Camera B is oriented so that A is in front of it; (b) Camera B is oriented so that A is behind it; (c) the image seen by
B for the configuration in (a); (d) the image seen by B for the configuration in (b). The image plane of B is indicated with a dashed
line. Note that cameras are modelled with the image plane in front of the camera centre.

Since the handedness of A with respect to PB is the opposite of B with respect to PA, the corresponding
tangencies have opposite handedness if both cameras are in front of each other. However, if exactly one
of the cameras is behind the other, the handedness of one of the tangencies flips, and the corresponding
tangencies have the same handedness. If both of the cameras are behind the other, then the handedness of
both of the tangencies flips, and the corresponding tangencies have opposite handedness (as for the case
when both cameras are in front of one another).
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3.6 Summary

This chapter has covered the main aspects of the geometry of silhouette sets that will be used throughout
this thesis. First, the visual hull, a widely-used approximation of 3D shape computed from silhouette sets,
was introduced. Next, it was shown that viewing edges impose constraints on the shape of the object that
produced the silhouettes. Viewing edges were demonstrated to provide both a means for computing bounds
on the longest and shortest diameters of a stone, and for computing an approximation to the convex hull
of the 3D shape of the stone, the VEMH. In later chapters, the VEMH will be used for pose optimisation,
approximating shape properties, and recognition tasks.

The ET error, a measure of silhouette inconsistency that is based on the epipolar tangency constraint was in-
troduced. The ET error plays an important role in the calibration and recognition methods that are developed
in the chapters that follow. Efficient algorithms for computing ET error that incorporate some new ideas have
been described.
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Chapter 4

Multiple Views from Mirrors

4.1 Introduction

Multiple silhouette images of particles for silhouette-based analysis are typically captured using a multi-
camera setup [108]. Such equipment is often not readily available, and a simpler acquisition system may be

beneficial for early investigations. For this reason, a simple setup using only two plane mirrors and a single
digital camera was used for initial data acquisition.

In addition to providing a means for capturing calibrated silhouette sets of particles, the method can be used to
create 3D visual hull models of objects for other applications such as 3D multimedia content creation. Other
shape-from-silhouette methods [91,97,99] for 3D content creation typically make use of calibration objects,
turntables, or synchronised multi-camera setups. The proposed setup provides a simple way of creating 3D
multimedia content that does not rely on specialised equipment. The setup need not be accurately positioned,
since self-calibration is used to determine all pose and internal parameters∗.

Two mirrors are used to create five views of an object: a view directly onto the object, two reflections, and
two reflections of reflections (see Figure 4.1). The image is segmented into foreground and background
regions producing an image containing five silhouette sub-images.

The method presented in this chapter describes how the internal camera parameters and pose associated with
each of the five silhouette views can be determined from the silhouette outlines alone. This means that self-
calibration is possible: no calibration markers are required. The method therefore allows a 5-view visual hull
model to be computed from a single snapshot of the scene.

By moving the camera, yet keeping the object and mirrors in the same positions, silhouettes from different
viewpoints can be captured. The relative pose of the camera can be computed for the different shots, allowing

∗Matlab software to perform the self-calibration is available from http://www.dip.ee.uct.ac.za/˜kforbes/.

57



./figures/mirror/HorseMirrorMay2007b.eps

Figure 4.1: The two-mirror setup used to capture five views of an object in a single image.

silhouette sets with an arbitrary number of silhouettes to be captured. Figure 4.2 shows an example of two
images of a scene captured from different viewpoints, allowing a 10-view silhouette set to be formed.

Another approach is to change the pose of the object between shots to capture different viewpoints. Chapter 6
explains how multiple 5-view sets can be merged into a single set.

Part of the work described in this chapter was presented as a conference paper [44]. This is an extension of
earlier work that was presented as another conference paper [47]. The earlier work assumes an orthographic
projection model and requires a dense search of parameter space to determine initial estimates. The method
described in this chapter improves on this earlier work by providing closed form solutions for the initial
parameter estimates using a perspective camera model.

4.2 Related Work

The computer vision literature describes various approaches for capturing silhouettes of an object from mul-
tiple viewpoints so that shape-from-silhouette reconstruction can be applied. Several approaches make use of

self-calibration: the silhouettes themselves are used to estimate camera pose and internal parameters. Rather
than assuming general poses for all silhouettes, these approaches typically make use of problem-specific con-
straints such as circular motion, known orientation, or coplanar viewing directions. The method described in
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Figure 4.2: Two images of a two-mirror setup positioned so that five views of the object can be seen. Note that the camera has
moved between shots, but the mirrors and object have not moved.

this chapter also makes use of problem specific constraints. The constraints in this case are imposed by the
mirror configuration that is used to produce multiple views.

Wong and Cipolla [139] describe a system that is calibrated from silhouette views using the constraint of
circular motion. Once an initial visual hull model is constructed from an approximately circular motion
sequence, additional views from arbitrary viewpoints can be added to refine the model. The user must
manually provide an approximate initial pose for each additional view which is then refined using an iterative
optimisation. Their method of minimising the sum-of-square reprojection errors corresponding to all outer
epipolar tangents is used in this chapter to provide a refined solution.

Okatani and Deguchi [101] use a camera with a gyro sensor so that the orientation component associated
with each silhouette view is known. An iterative optimisation method is then used to estimate the positional
component from the silhouettes by enforcing the epipolar tangency constraint.

Bottino and Laurentini [11] provide methods for determining viewpoints from silhouettes for the case of
orthographic viewing directions parallel to the same plane. This type of situation applies to observing a
vehicle on a planar surface, for instance.

Many works describe the use of mirrors for generating multiple views of a scene. For example, Gluckman
and Nayar [53] discuss the geometry and calibration of a two-mirror system using point correspondences.
Han and Perlin [55] use a kaleidoscope to simultaneously view a surface from many directions. This allows
the bidirectional texture function to be computed without mechanical movement. Hu et al. [62] describe
a setup similar to ours, however they use constraints imposed by both the silhouette outlines and point
correspondences for calibration.

Huang and Lai [63] have also extended our original two-mirror setup [47] to use a full perspective camera
model (as described in this chapter). However, their approach is different and was developed entirely inde-
pendently of our work (and was published subsequent to both our original method and our full perspective
method [44]). Their method of solving for the orientations is based on the equations involving the mirror
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normals, and is similar to our original algorithm for an orthographic projection model. Huang and Lai’s
method requires a least squares cost function to be minimised to estimate the focal length. This means that
an initial estimate of the focal length must be provided. The method described in this chapter provides a
closed form solution for the focal length.

Moriya et al. [96] describe an idea that is related to the work described in this chapter. Epipoles are computed
from the silhouette outlines of three shadows of a solid cast onto a plane, and are shown to be collinear.
The authors do not, however, mention any applications that can be derived from their observed collinearity
constraint.

4.3 Epipoles from Bitangents

This section deals with the case where a camera views an object and its reflection. It is shown how the
epipole corresponding to the virtual camera (the reflection of the real camera) can be computed directly from
the silhouette outlines of the real object and the virtual object in the image captured by the real camera. This
result will be used to calculate the positions of epipoles for the two-mirror setup.

Figure 4.3 shows an example of a camera observing a real object and its reflection in a mirror. The virtual
camera is also shown in the figure. Consider a plane Π1 that passes through the camera centres CR and CV

./figures/mirror/SingleMirrorScene4.eps

Figure 4.3: A camera viewing an object and its reflection. The epipole corresponding to the virtual camera can be computed from
the silhouette bitangents LR1 and LR2.
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and touches the real object at the point PR1. By symmetry, Π1 will touch the virtual object at the point PV 1

which is the reflection of PR1. Since Π1 is tangent to both objects and contains the camera centres CR and
CV , PR1 and PV 1 are frontier points. They project onto the silhouette outlines on the real image at points pRR1

and pRV 1. The points pRR1, pRV 1 and the epipole eRV (the projection of CR into the real image) are therefore
collinear, since they lie in both Π1 and the real image plane. Observe that the bitangent LR1 passing through
these three points can be computed directly from the silhouette outlines: it is simply the line that is tangent
to both silhouettes. Another bitangent LR2 passes through the epipole and touches the silhouettes on the
opposite side to LR1. These tangency points lie on a plane Π2 that is tangent to the opposite side of the object
and passes through both camera centres. Provided that the object does not intersect the line passing through
both camera centres, there will always be two outer epipolar tangents LR1 and LR2 that touch the silhouettes
on either side.

The position of the epipole eRV can therefore be computed by determining LR1 and LR2 from the silhouette
outlines: it is located at the intersection of LR1 and LR2. Note that the epipole is computed without requiring
knowledge of the camera pose and without requiring any point correspondences.

Also note that, by symmetry, the real camera’s silhouette view of the virtual object is a mirror image of the
virtual camera’s silhouette view of the real object. The silhouette view observed by a reflection of a camera
is therefore known if the camera’s view of the reflection of the object is known.

4.4 Two-Mirror Setup

Figure 4.4 shows an example of a two-mirror setup that is used to capture five silhouette views of an object

in a single image. The camera is centred at CR and observes a real object OR. The camera also captures
the image of each of four virtual objects OV 1, OV 2, OV 12, and OV 21. Object OV 1 is the reflection of OR in
Mirror 1; OV 2 is the reflection of OR in Mirror 2; OV 12 is the reflection of OV 1 in Mirror 2; and OV 21 is the
reflection of OV 2 in Mirror 1.

The proposed method requires six virtual cameras to be considered. The virtual cameras are reflections of
the real camera CR. The virtual cameras CV 1, CV 2, CV 12, and CV 21 are required, as their silhouette views of
the real object are the same as the silhouettes observed by the real camera (or reflections thereof). Since
silhouettes from the real camera are accessible, the silhouettes observed by the four virtual cameras can be
determined. Each of the five cameras’ silhouette views of the real object can then be used to compute the
five-view visual hull of the object.

The virtual cameras CV 121 (the reflection of CV 12 in Mirror 1), and CV 212 (the reflection of CV 21 in Mirror 2)
are to be considered too, since it turns out that their epipoles can be computed directly from the five silhou-

ettes observed by the real camera. These epipoles, together with the epipoles from the virtual cameras CV 1

and CV 2 can then be used to calculate the focal length of the camera.
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./figures/mirror/DoubleMirrorScene4.eps

Figure 4.4: Mirror setup showing one real and four virtual objects, and one real and six virtual cameras.

4.5 Analytical Solution

This section presents a method to calculate the focal length and principal point of the camera and the poses
of the virtual cameras relative to the pose of the real camera for the five camera views in an image. Next, a
method for determining camera motion between snapshots is presented. This allows all silhouettes from all
images to be specified in a common reference frame. Closed form solutions in which the required param-
eters are determined from the silhouette outlines alone are provided. Silhouette outlines are represented by
polygons, and pixels are assumed to be square.

First, it is demonstrated how lines that are tangent to pairs of silhouettes can be used to calculate the position
of four epipoles corresponding to four virtual cameras. The principal point is constrained by the epipoles to
a line in each image; the intersection of the lines is the principal point. Next, it is shown how the focal length
is a function of the relative positions of these four epipoles. Once the focal length is known, it is shown
that mirror and camera orientation are easily determined from the positions of two epipoles. The positional
component of the poses can be computed using the epipolar tangency constraint. Finally, it is shown how
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the camera poses between shots are constrained by the constant positions of the mirrors with respect to the
object.

4.5.1 Four Epipoles from Five Silhouettes

Here, it is shown how the epipoles are computed from pairs of silhouettes using the result explained in
Section 4.3: the epipole corresponding to a camera’s reflection can be computed from the camera’s silhouette
image of an object and its reflection by finding the intersection of the two outer bitangents. Figure 4.5 shows
how the epipoles eV 1, eV 2, eV 121, and eV 212 are computed from the outlines of the five silhouettes observed by
the real camera. The distances a, b, and c between the epipoles will be used for computing the focal length.
The outline γRR corresponds to the object OR, and γRV 1 corresponds to OV 1 which is the reflection of OR in
Mirror 1. The intersection of the pair of lines that are tangent to both γRR and γRV 1 is therefore the epipole
eV 1, since CV 1 is the reflection of CR in Mirror 1. The two lines that are tangent to both γRV 2 and γRV 21 also
meet at eV 1, since OV 21 is the reflection of OV 2 in Mirror 1. Similarly, the pairs of lines that are tangent to
both γRR and γRV 2, and to γRV 1 and γRV 12 meet at eV 2.

./figures/mirror/epipoles.eps

Figure 4.5: Computing epipoles eV 1, eV 2, eV 121, and eV 212 from the silhouette outlines in an image.

Consider CR observing OV 1. Object OV 21 is related to OV 1 through three reflections. Object OV 1 must be
reflected by Mirror 1 (to get OR) and then Mirror 2 (to get OV 2) and then again by Mirror 1 to get OV 21. The
effect of these three reflections can be considered to be a single reflection. Applying the triple reflection to
CR gives CV 121. The two lines that are tangent to both γRV 1 and γRV 21 therefore meet at eV 121. This is again
because a camera (CR) is observing silhouettes of an object (OV 1) and its reflection (OV 12), so the projection
of the camera’s reflection (CV 121) can be computed from the silhouette bitangents. Similarly, the two lines
that are tangent to both γRV 2 and γRV 12 meet at eV 212.
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Note that the epipoles eV 1, eV 2, eV 121, and eV 212 are collinear, since they all lie in both the image plane of the
real camera and in the plane ΠC in which all camera centres lie.

4.5.2 Focal Length and Principal Point from Epipoles

It is now shown how the focal length is computed from the positions of the four epipoles eV 1, eV 2, eV 121, and
eV 212. This is done by considering the positions of the camera centres in the plane ΠC.

First, two new mirrors, Mirrors A and B, which do not correspond to physical mirrors in the scene, are
introduced. This approach makes the problem of calculating the focal length tractable. Mirror A has the
same orientation as Mirror 1, but is positioned so that it passes midway between eV 1 and CR (see Figure 4.6a
in which the positions of points in ΠC are shown). The point eV 1 is therefore the reflection of CR in Mirror A.

./figures/mirror/SolveFocalLengthDiagEpiEquiv2.eps

(a)

./figures/mirror/SolveFocalLengthDiagEpipoles2.eps

(b)

Figure 4.6: Diagrams showing (a) the intersections of Mirror 1, Mirror A and Mirror 2 with ΠC along with the positions of the
cameras and epipoles, all of which lie in ΠC, and (b) computing fπ and pπ from the four epipoles eV 1, eV 2, eV 121, and eV 212

Point E is the reflection of eV 1 in Mirror 2, and F is the reflection of E in Mirror A. Note that F lies on the ray
passing through eV 121 and CR. Also note that F will stay on this line if the position (but not the orientation)

of Mirror 2 changes. This is because triangles 4CRCV 1D and 4CReV 1G are similar.

Figure 4.6b shows the positions of the epipoles and CR in ΠC. The distances a, b, and c between the epipoles
(as shown in the figure) are used to compute the distance fΠ between CR and the image plane in the plane
ΠC. The distance fΠ is then used to calculate the focal length. The figure also shows Mirror B which has
the same orientation as Mirror 2, and is positioned midway between CR and eV 2. The line joining eV 2 to its
reflection in Mirror A meets Mirror B at point J which projects onto eV 212.
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The triangle 4HeV 2CR is similar to 4CReV 1G, the line segment from eV 121 to eV 2 is of length c, and the
line segment from eV 1 to eV 121 is of length a + b. This indicates that the ratio of the sides of 4HeV 2CR to
4CReV 1G is c : (a+b). This means that d(eV 1,G) = d(CR,ev2)(a+b)/c. (The notation d(x,y) indicates the
distance between x and y.)

Similarly, the triangle4KeV 1CR is similar to4CReV 2J, the line segment from eV 1 to eV 212 is of length a, and
the line segment from eV 212 to eV 2 is of length b+c. This indicates that the ratio of the sides of4KeV 1CR to
4CReV 2J is a : (b+ c). Therefore d(eV 2,J) = d(CR,eV 1)(b+ c)/a.

This allows d(CR,eV 1) to be written in terms of d(CR,eV 2), since 4CReV 2J is similar to 4CReV 1G:

d(CR,eV 1) =

√
c (c+b)a (a+b)

c (c+b)
d(CR,eV 2). (4.1)

The sides of 4CReV 1G are now known up to a scale factor.

The angle ∠CReV 1G = α+β can be computed using the cosine rule:

cos(α+β) = 1/2

√
c (c+b)a (a+b)
(c+b)(a+b)

. (4.2)

The cosine rule can be used to determine the sides of 4eV 1CReV 2. (The angle ∠eV 1CReV 2 = 180◦−α−β.)

The value of fΠ can now be stated in terms of a, b, and c (with the help of the Matlab Symbolic Toolbox for
simplification):

fΠ = 1/2
(a+b+ c)

√
ac(3ac+4ab+4bc+4b2)

a2 +ab+ c2 +bc+ac
. (4.3)

The point closest to CR on the line containing the epipoles, is

pΠ = eV 1 +1/2
(2a+2b+ c)a (a+b+ c)

a2 +ab+ c2 +bc+ac
eV 2− eV 1

||eV 2− eV 1|| . (4.4)

The line passing through pΠ and perpendicular to the line containing the epipoles passes through the principal
point p0. The principal point can therefore be computed as the intersection of two such lines from two images
of the scene. (If the principal point is assumed to lie at the image centre, then a single snapshot could be
used.)

The focal length (the distance from CR to the image plane) can now be calculated from pΠ, the principal
point p0 and fΠ (see Figure 4.7):

f =
√

f 2
Π−||p0−pΠ||2. (4.5)
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./figures/mirror/SideViewFocalLength.eps

Figure 4.7: View of the camera perpendicular to both the image plane and ΠC.

4.5.3 View Orientations

Once the focal length of the camera has been calculated, the view orientation can be computed relatively
easily. The mirror normal directions m1 and m2 are computed from the focal length, the principal point p0

and the epipoles eV 1 and eV 2:

m1 =−
[

eV 1−p0

f

]
, m2 =−

[
eV 2−p0

f

]
. (4.6)

A 3× 3 matrix R that represents a reflection by a mirror with unit normal m̂ = [mx,my,mz]T is used to
calculate view orientation:

R =



−m2

x +m2
y +m2

z −2mxmy −2mxmz

−2mxmy m2
x −m2

y +m2
z −2mymz

−2mxmz −2mymz m2
x +m2

y −m2
z


 . (4.7)

4.5.4 View Positions

The point CV 1 is constrained to lie on the line passing through eV 1 and CR. Similarly, the point CV 2 is
constrained to lie on the line passing through eV 2 and CR. Since absolute scale cannot be inferred from the
image (if the scene were scaled, the image would not change), CV 1 is fixed at unit distance from CR. The
only positional unknown across the entire setup is now the position of CV 2 on the line passing through eV 2

and CR.

To solve for w, the distance from CR to CV 2, the epipolar tangency constraint is used. This constraint requires

that a tangent to a silhouette outline that passes through the epipole must be tangent to the corresponding
point in its projection into the image plane of the other view. The relationship between the silhouette views
of cameras CV 1 and CV 2 is used to enforce this constraint.
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The poses of the cameras CV 1 and CV 2 are specified by 4× 4 rigid transform matrices from the reference
frame of the real camera:

M =

(
R t
0T 1

)
, (4.8)

where the translational component t is given by t = 2(mx px +my py +mz pz)(mx,my,mz)T and (px, py, pz)T is
a point on the mirror.

The matrix M1M
−1
2 represents the rigid transform from the reference frame of CV 2 to that of CV 1.

The point pV 2 is one of two outer epipolar tangencies formed by lines passing through eV 2V 1 (the projection
of CV 1 onto the image plane of camera CV 2) and tangent to the silhouette observed by the camera CV 2.

The point pV 1V 2 is the projection of pV 2 into camera CV 1. It must correspond to pV 1, one of two outer
epipolar tangencies formed by lines passing through eV 1V 2 (the projection of CV 2 onto the image plane of
camera CV 1).

The epipolar tangency constraint is expressed as

(pV 1V 2× eV 1V 2) ·pV 1 = 0, (4.9)

where pV 1V 2, eV 1V 2, and pV 1 are represented by homogeneous coordinates. In other words, the line passing
through pV 1V 2 and eV 1V 2 must also pass through pV 1.

Equation 4.9 can be specified in terms of pV 1, pV 2, the computed orientation and camera internal parameters,
and w. The Matlab Symbolic Toolbox was used to determine a solution for w (the equation is too large to
reproduce here). Unfortunately, the values of both pV 1 and pV 2 are unknown, since the epipoles from which
they may be computed are functions of the unknown w.

The values of pV 1 and pV 2 can be determined by exhaustive search, by finding the polygon vertex pair that
fulfils the epipolar tangency constraint. Instead, the need for an exhaustive search is removed by using a
parallel projection approximation to determine approximate correspondences. The tangencies are selected

as the support points for outer tangent pairs that are parallel to the projected viewing direction. Unless the
camera is very close to the object, this method selects either the same vertices, or vertices very close to the
true tangencies under a perspective projection.

4.5.5 Combining Five-View Silhouette Sets

The calibration procedure described above allows five silhouette views from one image to be specified in a
common reference frame. The pose and internal parameters of the four virtual cameras and one real camera
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are known. The silhouettes observed by these cameras are also known: the silhouettes observed by the virtual
cameras are those observed by the real camera of the corresponding virtual object.

The next step is to specify the silhouette sets from two or more images in a common reference frame. This
is easily achieved, since the mirror poses are known with respect to the real camera for each image. The
five-view silhouette sets are aligned by aligning the mirrors across sets. There are two additional degrees
of freedom that the mirrors do not constrain: a translation along the join of the mirrors, and an overall
scale factor. These are approximated using the epipolar tangency constraint and a parallel projection model
(as for computing w): each five-view silhouette set is scaled and translated along the mirror join so that
outer epipolar tangents coincide with the projected tangents from silhouettes in the other silhouette set. Each
silhouette pair between silhouettes in different sets provides an estimate of translation and scale. The average
result over all pairings is used.

4.6 The Refined Self-Calibration Procedure

The method described in Section 4.5 provides a means for computing all calibration parameters. However,
better results are obtained if parameter estimates are refined in several steps. This is done by adjusting
the parameters to minimise the sum-of-of square distances between epipolar tangencies and corresponding
projected tangents using the Levenberg-Marquardt method. The geometry of the problem naturally allows
for parameters to be decoupled from one another, allowing minimisation to be applied to small numbers of
parameters at a time.

The first step of the procedure is to determine which silhouettes correspond to which camera views for each

of the five silhouettes in the image. This is done by ordering the five silhouettes along their convex hulls, and
then considering the five arrangements. The four epipoles eV 1, eV 2, eV 121, and eV 212 are computed for each
of the five possible arrangements. The lowest sum-of-square distances between silhouette tangents passing
through the epipoles and tangents on the corresponding silhouettes is used to select the correct arrangement.

With noise, the tangent intersections used to calculate the four epipoles will, in general, produce epipoles
that are not collinear. The epipoles eV 1 and eV 2 each lie at the intersection of four tangents. In the presence
of noise, the four tangents will not intersect at a common point. For a refined estimate, the positions of the
four epipoles are parameterised using only six degrees of freedom, so that the epipoles are constrained to be
collinear. The sum-of-square distances from tangency points to the corresponding tangents generated by the
opposite silhouette is minimised. The tangents pass through the appropriate epipole and touch the silhouette.
To form a starting point (initial estimate) for the minimisation, the tangent intersections are computed, and
the points closest to an orthogonal regression line through the intersection points are used.

Focal length and principal point values are then computed for each image, averaged, and adjusted to minimise
reprojection error. The unknown positional component is computed next for each image. Parameters are then
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adjusted by minimising reprojection error using all possible silhouette pairings between silhouettes within
each set.

Finally, the five view sets are merged into a single large set as described in Section 4.5.5. A final minimisation
adjusts all parameters simultaneously to minimise the sum-of-square distances across all silhouette pairings.
There are 10k(5k−1) distance values for k input images.

4.7 Experiments

4.7.1 Qualitative Results from Real Data

Qualitative testing of the proposed self-calibration method was carried out using the two 2592×1944 images
of a toy horse shown in Figure 4.2. The five silhouettes in each image were determined using an intensity
threshold.

Figure 4.8 illustrates the bitangents and epipoles computed from one of the two input images. Poses and

./figures/mirror/Horse1Bitangents2.eps

Figure 4.8: Computed bitangents and epipoles overlaid on one of the input images of a toy horse.

internal parameters were computed from the positions of the epipoles in the two input images using the
methods described in this chapter. Visual hulls were computed from the silhouette to provide a qualitative
assessment of the 3D shape reconstructions that one can obtain with the two-mirror setup.

The resultant visual hull model is shown in the third column of Figure 4.9. The figure also shows visual hull
models created using only the five silhouettes from each of the images. This demonstrates the improvement
in the quality of the model obtained by merging the silhouette sets. Note that both five-view visual hulls have
regions of extra volume that are not present in the ten-view visual hull.

The angle between the mirrors was computed to be 73.1 degrees. The focal length was computed to be 2754
pixels and the principal point located at (1306,981). This compares with values of 2875 and (1297,958)
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./figures/mirror/HorseAIm1.eps./figures/mirror/HorseAIm2.eps./figures/mirror/HorseAIm12.eps

./figures/mirror/HorseBIm1.eps./figures/mirror/HorseBIm2.eps./figures/mirror/HorseBIm12.eps

Figure 4.9: Two views of the visual hull of the horse formed from the silhouettes in image 1 (first column), the silhouettes in image
2 (second column), and all ten silhouettes (third column).

computed using a checkerboard calibration method (Jean-Yves Bouguet’s Camera Calibration Toolbox for
Matlab). Note, however, that a direct comparison of individual parameters does not necessarily provide a
good indication of the accuracy of the calibration parameters. The calibration parameters should provide
an accurate mapping from 2D image points to 3D rays in the volume of interest. The interplay between
the different parameters can result in different parameter sets varying to some degree in magnitude, yet still
providing a good mapping in the volume of interest. A difference in principal point location can largely
be compensated for by a difference in translation parameters, for instance. A more meaningful measure of
calibration parameter quality using the silhouette calibration ratio is described in Section 4.7.2.

Figure 4.10 provides further qualitative results, showing visual hulls of various objects computed using the
proposed two-mirror setup.

4.7.2 Images Captured with a Moving Camera

Ball Images

To provide a quantitative evaluation of the viewpoint positions provided by the two-mirror setup, two images
of a ball bearing were used. Since the imaged object is of known shape (it is spherical), it is possible to
quantify the geometrical constraints that its silhouettes impose on its 3D shape.

Two images of a ball were captured from two viewpoints using the two-mirror setup (see Figures 4.11a
and 4.11b). Self-calibration was applied to the two images using the method described in this chapter.
The 3D position and diameter of the sphere were then estimated by iterative optimisation: the sum-of-
square distances between the projected ball and the polygonal boundary vertices of the observed silhouettes
was minimised using the Levenberg-Marquardt method. The inferred sphere parameters and calibration
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./figures/mirror/Cup_smallIMG_0015.eps./figures/mirror/Cup_smallIMG_0019.eps./figures/mirror/Cup_smallIMG_0021.eps./figures/mirror/cup.eps

./figures/mirror/IMG_0001.eps./figures/mirror/IMG_0004.eps./figures/mirror/LocustVh3.eps

./figures/mirror/lion1.eps./figures/mirror/lion3.eps./figures/mirror/Lion.eps

./figures/mirror/gravel18campose1.eps./figures/mirror/gravel18campose2.eps./figures/mirror/Gravel18.eps

Figure 4.10: Visual hulls computed using the proposed two-mirror setup. Input images are shown in the to the left, and the resultant
visual hulls are shown to the right. From top to bottom: a cup, a toy locust, a toy lion, and a piece of gravel. Black velvet was used
as a background for the cup and the locust, whereas a backlight was used for the lion and the gravel.
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./figures/mirror/Ball4Circles.eps

(a)

./figures/mirror/Ball6Circles.eps

(b)

./figures/mirror/TenMirrorViews.eps

(c)

./figures/mirror/BallVhSet1.eps

(d)

./figures/mirror/BallVhSet2.eps

(e)

./figures/mirror/BallVhSet12.eps

(f)

./figures/mirror/DiamPlot1.eps

(g)

./figures/mirror/DiamPlot2.eps

(h)

./figures/mirror/DiamPlot12.eps

(i)

Figure 4.11: Shape inference from silhouettes of a ball bearing using the two-mirror setup: (a) first input image, (b) second input
image, (c) ten viewpoints corresponding to the ten observed silhouettes, (d) synthetic 5-view visual hull corresponding to the first
input image (e) synthetic 5-view visual hull corresponding to the second input image, (f) synthetic 10-view visual hull corresponding
to both input images, (g)–(i) distributions of bounds of the diameter computed over all directions as a proportion of the true diameter.
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parameters were then used to generate exact synthetic silhouette projections of the sphere that corresponds
to the real data. This allows investigation of the inherent geometrical limitations of the extent to which 3D
shape can be investigated from silhouettes using the two-mirror setup. In other words, the limitations that
exist in the absence of noise can be investigated.

Results are presented in Figure 4.11. The ten silhouettes captured in the two images provide ten well-
distributed viewpoints (Figure 4.11c).

The second row of the figure shows visual hulls computed from the 5-view silhouette sets from the images
considered individually, and from the 10-view silhouette sets of both images considered together. The cone

strip components are coloured according to the corresponding camera view. The 5-view visual hull from the
first image is 105.3% of the sphere volume. The 5-view visual hull from the second image is clearly a poor
approximation to the sphere, and is 149.8% of the sphere volume. Nevertheless, the 10-view visual hull is
only 101.2% of the sphere volume, so both silhouette sets make significant contributions to carving away
volume that is not part of the imaged object. (Since exact silhouette sets are used, the computed visual hull
cannot be less than 100% of the sphere volume.)

The last row of Figure 4.11 quantifies the geometrical limitations that the three silhouette set impose on the
diameter of the imaged object over all directions. (Coverage of all directions was approximated by con-
sidering directions specified by six icosahedron subdivisions.) The plots indicate that the 5-view silhouette
set corresponding to the second image does not provide tight constraints on object shape. For instance, the
upper bound on the diameter is 250% of its actual value in some directions. Since both the upper and lower
bounds on the diameter in a given direction are closer to 100% for the 10-view silhouette set, it provides
tighter constraints on the shape of the imaged object than either of the 5-view silhouette sets.

Gravel Images

Two images were captured for each of twenty pieces of gravel using the two-mirror setup. Figure 4.12 shows
an example.

Although the primary purpose of capturing the data set was to generate synthetic data based on real data,
the real data also allow the repeatability of the estimated calibration parameters to be quantified. Results
that quantify repeatability are presented in Table 4.1. The mirrors and the camera internal parameters were

mirror angle [degrees] f [pixels] u0 [pixels] v0 [pixels]
mean 74.605 3862.7 653.55 467.6

standard deviation 0.017766 51.499 29.995 24.929

Table 4.1: Mean and standard deviation for parameter values computed using 20 different stones. Results are shown for the angle
between the mirrors, the focal length f , and the principal point (u0, v0). Two images from different viewpoints were used for each
stone.
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./figures/mirror/Greyscale_Gravel1View4.eps./figures/mirror/Greyscale_Gravel1View3.eps

Figure 4.12: Example of two images of a piece of gravel.

fixed during the capture of 40 images of the 20 pieces of gravel, whereas the camera was held by hand and
moved between shots. The estimated internal camera parameters tend to vary from set to set (for instance
the coefficient of variation of the focal length is 1.3%). This occurs because small variations in these values
can largely be absorbed by camera pose parameters while still maintaining an accurate image point to 3D
ray mapping in the volume of interest. The angle between mirrors computed over twenty calibrations has a
standard deviation of less than 1/50th of a degree.

Synthetic Data

To investigate the sensitivity of the method to noise, synthetic images were used. This allows the exact
values of calibration parameters to be known. To ensure that realistic parameter values were considered,
the synthetic images were based on the real images of the gravel. Exact polygonal projections of the ten-
view polyhedral visual hull of the gravel were generated using the output provided by the real images. This
provides an exactly consistent set of silhouettes.

Quantisation noise was introduced by rendering the polygonal silhouettes, first at the original image resolu-
tion (2592×1944), and then at successively lower resolutions.

Boyer [14] introduced the silhouette calibration ratio Cr as a measure of the combined quality of silhouettes
and camera parameters. Ideally, some point on any viewing ray in a silhouette must intersect all n−1 other

visual cones of the n-view silhouette set. The ratio of the actual maximum number of intersections for points
on the ray to n− 1 is a measure of consistency; Cr is the mean value for all rays from all silhouettes. A
measure of inconsistency is given by 1−Cr.

Figure 4.13 shows plots of 1−Cr versus the degree of resolution reduction for the computed camera pa-
rameters and quantised silhouettes. Results are also shown with the computed camera parameters and exact
silhouettes, as well as exact camera parameters and quantised silhouettes. The plots show that without
refinement, the poor accuracy of the camera parameters is a greater contributor to inconsistency than the
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./figures/mirror/BoyerMirrorNoRefinement.eps

(a) no refinement

./figures/mirror/BoyerMirrorWithRefinement.eps

(b) with refinement

Figure 4.13: Plots of image resolution versus silhouette inconsistency measured using the silhouette calibration ratio for self-
calibration (a) without, and (b) with refinement. The trend lines pass through the mean values of the data points. To aid visualisation,
a small amount of jitter has been added to the horizontal components of the data points.
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quantisation of the silhouettes alone. However, for the refined camera parameters, the quantised silhouettes
and exact camera parameters are more inconsistent than the exact silhouettes and the computed camera pa-
rameters, demonstrating the accuracy of the refined calibration method. In other words, the quantisation of
the silhouettes is a greater contributor to inconsistency than the camera parameters computed with refinement
from the quantised silhouettes.

4.7.3 Images Captured with a Fixed Camera

Silhouette sets captured using a freely moving camera are calibrated up to an unknown scale factor. This
means that dimensionless quantities such as the ratios used to specify particle elongation and flatness can
be estimated from silhouette sets, but properties that require absolute scale such as particle volume can not.
If the camera is kept in a fixed position with respect to the mirrors (using a tripod, for instance), then the
relative scale for all silhouette sets will be the same. Absolute scale can be enforced by imaging an object of
known size such as a ball bearing.

A data set of 220 pieces of gravel was captured using the mirror setup with the camera fixed to a tripod
with a tilt angle of approximately 45◦. Three images were captured of each stone, with the stones manually

reoriented between shots. Polyhedral models of the stones are illustrated in Appendix C on page 220. The
data set of 220 pieces of gravel is used to test shape and recognition algorithms in later chapters.

./figures/mirror/Ball1Run3Circles.eps

(a) 12.700 mm ball

./figures/mirror/Ball2Run3Circles.eps

(b) 15.875 mm ball

./figures/mirror/Ball3Run3Circles.eps

(c) 19.050 mm ball

./figures/mirror/Ball7Run4Circles.eps

(d) 25.400 mm ball

./figures/mirror/Ball5Run5Circles.eps

(e) 31.750 mm ball

./figures/mirror/Ball6Run4Circles.eps

(f) 38.100 mm ball

Figure 4.14: Six images of six ball bearings used for enforcing scale.
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Scale was enforced for the gravel silhouette sets by fitting a sphere to silhouettes of an imaged ball bearing
as described in Section 4.7.2. Stones were grouped in batches of 20 and calibration and scale enforcement
was carried out separately for each batch.

To test the accuracy of scale enforcement, six images of ball bearings of different sizes were captured (see
Figure 4.14). For each ball, the calibration and scale information estimated with another ball was used, and
together with the ball’s silhouettes the best fit sphere was computed. The diameter of the best fit sphere is
compared with the ground truth diameter in Table 4.2. Results are shown for all pair combinations. The
largest absolute percentage error for an estimated diameter is 0.281%.

12.700 mm 15.875 mm 19.050 mm 25.400 mm 31.750 mm 38.100 mm
ball ball ball ball ball ball

12.700 mm 15.905 mm 19.062 mm 25.453 mm 31.786 mm 38.168 mm
calibration (+0.189%) (+0.065%) (+0.207%) (+0.115%) (+0.180%)
15.875 mm 12.676 mm 19.027 mm 25.405 mm 31.727 mm 38.097 mm
calibration (-0.189%) (-0.123%) (+0.018%) (-0.074%) (-0.009%)
19.050 mm 12.691 mm 15.894 mm 25.438 mm 31.770 mm 38.152 mm
calibration (-0.071%) (+0.122%) (+0.150%) (+0.064%) (+0.135%)
25.400 mm 12.671 mm 15.869 mm 19.021 mm 31.724 mm 38.098 mm
calibration (-0.231%) (-0.037%) (-0.152%) (-0.081%) (-0.005%)
31.750 mm 12.678 mm 15.879 mm 19.033 mm 25.418 mm 38.132 mm
calibration (-0.175%) (+0.024%) (-0.089%) (+0.073%) (+0.085%)
38.100 mm 12.664 mm 15.862 mm 19.014 mm 25.394 mm 31.721 mm
calibration (-0.281%) (-0.080%) (-0.189%) (-0.022%) (-0.090%)

Table 4.2: Ball diameters estimated from a 5-view image of a ball using calibration parameters determined by a 5-view image of a
ball of another size. Estimated ball diameter and percentage error are shown.

4.8 Summary

A novel image capture setup that provides a simple means for capturing multiple silhouettes of an object
from well-distributed viewpoints has been described. This chapter has demonstrated how silhouettes impose
constraints that allow the pose and internal parameters associated with each view to be computed from the
silhouettes alone. Since self-calibration is applied, there is no need for accurate positioning of the apparatus,
and there is no need for a calibration object with control points whose coordinates must be known in advance.

Synthetic images have been used to demonstrate that the computed camera parameters have less effect on
quality as measured by the silhouette calibration ratio than the noisy silhouettes from which they are com-
puted.

The approach is limited to objects that can be segmented from the background to produce silhouettes. Objects
are required to be positioned so that five non-overlapping views are visible to the camera.
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The method provides the required input for multi-view silhouette-based particle analysis applications (such
as recognition and shape analysis), and is also potentially a useful tool for 3D multimedia content creation.

Later chapters will quantify the performance that can be achieved for shape property estimation and matching
applications using the two-mirror setup described in this chapter. This will be done using the data set of
images of 220 pieces of gravel.
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Chapter 5

Configuration and Calibration of a
Multi-Camera Setup

5.1 Introduction

A multi-camera setup allows a much greater throughput rate than the two-mirror setup described in the
previous chapter, but this comes at the cost of greater monetary expense.

The setup used in this thesis consists of six simultaneously triggered cameras. Particles are placed on a
feeder above the cameras. The feeder causes the particles to fall past the cameras one by one at a rate of
approximately ten particles per second. As each particle falls, it passes through a light curtain that triggers
the cameras so that a 6-view image set of the particle is captured. The multi-camera setup used in this work
was built by Anthon Voigt and his team at the premises of the company that commissioned part of the work
described in thesis. The hardware aspects of the multi-camera setup lie outside the scope of this thesis.

In this chapter, the rationale behind the positioning of the cameras is discussed. A simple method for cali-
brating the cameras using images of a ball of known size is then presented.

5.2 Positioning Multiple Cameras

The multi-camera setup serves several purposes: matching stones, estimating various size and shape proper-
ties, and building 3D visual hull models of stones for visualisation purposes.

Accuracy can be improved for a given application by increasing the number of cameras in a multi-camera
system. However, for a given number of cameras, it is not obvious how the cameras should be positioned
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so as to obtain the best accuracy. The solution to the problem is somewhat dependent on the measure of
accuracy, the specific application, and the sizes and shapes of the particles.

The multi-camera setup was built with six cameras positioned so that each camera looks onto one of the six
parallel face pairs of a regular dodecahedron. Figure 5.1 illustrates the setup. Each camera is approximately

./figures/calib/SputnikConfig.eps

Figure 5.1: The configuration of the six-camera setup used in this thesis.

500 mm from the centre of the dodecahedron. Since particles tend to be imaged close to the centre of
the dodecahedron, and are approximately 5 mm in diameter, the setup provides weak perspective imaging
conditions: particles are close to the optical axes of all cameras, and particle depth variation is small with
respect to the distances to the cameras.

The number of cameras was limited by monetary cost and hardware limitations. Six was also considered
to be a more favourable number of cameras than five or seven, since a symmetrical configuration could be
realised. The remainder of this section gives some justification to the choice of camera configuration.

5.2.1 Undesirability of Coplanar Cameras

Although the problem of determining the best next view for shape-from-silhouette modelling has been con-
sidered before [12, 114], the problem of optimally positioning a number of fixed cameras for shape-from-
silhouette applications has received little attention in the computer vision literature.

Mundermann et al. [98] address the problem in the context of building visual hull models of humans. They
find that cameras positioned in a geodesic dome configuration (i.e., well-distributed over a hemisphere), and
cameras positioned in a circular coplanar configuration around the object produce the best results.

Other than Mundermann et al.’s findings that a circular coplanar configuration is desirable for at least certain
applications, a coplanar configuration is worth considering since it simplifies the manufacture and assembly
of the structure that houses the cameras.

Figure 5.2 illustrates why a circular configuration (cameras with coplanar optical axes) is undesirable for
estimating 3D shapes of certain nonconvex particles from silhouette sets. In the first row of the figure, the
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(a) particle and cameras
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(b) visual cones

./figures/calib/BananaCoplanarHull.eps

(c) visual hull

./figures/calib/BananaDodecCams35mm.eps

(d) particle and cameras
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(e) visual cones

./figures/calib/BananaDodecHull.eps

(f) visual hull

Figure 5.2: Six cameras observing a banana-shaped particle: (a)–(c) show cameras with coplanar optical axes, (d)–(f) show cameras
based on a Platonic solid geometry. Note that the coplanar cameras yield a visual hull model that is much larger than the particle:
the extra volume is due to the saddle-shaped region of the particle. The cameras based on a Platonic solid geometry yield a visual
hull model that is a relatively close approximation to the particle.

cameras are positioned so that their optical axes are coplanar, with an even angular distribution about 180◦.
The visual hull model (Figure 5.2c) is a poor approximation to the banana-shaped particle (Figure 5.2a), since
there is additional volume in the saddle-shaped region. This camera configuration would perform poorly at
visual hull-based volume estimation, since for nonconvex particles the volume estimate would be highly
dependent on the orientation of the particle with respect to the cameras. The circular camera configuration
is desirable for building visual hull models of humans (the application of Mundermann et al.), since humans

are not arbitrarily oriented with respect to the cameras.

Section 7.5.5 provides some further results that demonstrate the undesirability of coplanar cameras in the
context of matching pairs of silhouette sets: mismatch pairs cannot be distinguished from match pairs for a
range of particle orientations.

5.2.2 Positioning Cameras by Optimising Objective Functions

The camera configuration for the work presented in this thesis was determined by optimising an objective
function. Two approaches were considered: (1) maximising the sum of distances between frontier points on a
sphere, and (2) minimising the angle between the most isolated direction and its closest viewing direction. In
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other words, two different criteria were considered for positioning the cameras. The frontier point criterion

specifies that the cameras should be positioned so that the sum of distances between frontier points on a
sphere is maximal. The direction isolation criterion specifies that the direction that is furthest (in terms of
angle) from any of the viewing directions is minimal.

Representation for Cameras

The pose of a camera has six degrees of freedom. However, the orientation of the camera does not affect the
information contained in a silhouette: rotating the camera about its centre does not alter the rays that pass
through the centre. Furthermore, since the viewed particles are small with respect to the variation in particle
position and the working distance of the cameras, it may be assumed that the distance from the cameras to
the particles is many times greater than the size of the particles. This means that the positional component of
each camera along its optical axis is almost inconsequential from an informational point of view. For these
reasons, the positioning of each additional camera with respect to a fixed first camera can be considered to
introduce only two additional degrees of freedom. For simplicity, cameras are considered to be directions
specified by points on a sphere and an orthographic imaging model is used.

Camera positions are over-parameterised by using three coordinates to specify the position of each of the
cameras on the viewing sphere (two degrees of freedom). The over-parameterisation prevents the occurrence
of singularities and allows for a smooth function to aid the optimisation process.

The Frontier Point Criterion

The objective function to be maximised for the frontier point criterion is the sum of distances between
frontier points on a sphere viewed by orthographic cameras. Each possible pairing of two cameras yields
two frontier points on the viewed sphere: if n cameras are used, then there are n(n− 1) frontier points. A
sphere is used instead of any other shape for reasons of symmetry and simplicity. In practice, particles being
viewed by the cameras can be assumed to be arbitrarily oriented: a sphere does not introduce any directional
bias. Maximisation of the objective function ensures that frontier points are well-distributed over the surface
of the viewed object.

Since frontier points are well-distributed on a sphere, they are also well-distributed on the particle. (The

frontier points that lie on the saddle-shaped region project to epipolar tangencies that are not outer epipolar
tangencies, since the epipolar tangencies lie on concave boundaries of the silhouettes.) Frontier points lie
both on the particle and on the visual hull, so regions close to the frontier points are accurately modelled
by the visual hull (provided that there aren’t sudden changes in the local surface geometry). A camera
configuration that causes frontier points to be well-distributed over the object is therefore likely to provide
a visual hull model that accurately approximates the particle over all regions of the particle’s surface. This
reduces the likelihood of certain regions being poorly modelled and ensures reasonable performance for
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applications such as volume estimation and shape analysis in which the visual hull is used as an estimate of
the shape of the particle.

The Direction Isolation Criterion

An alternative approach is to minimise the most isolated unused viewing direction. By limiting the maximum
difference in direction between unobserved views of an object and the observed views, the probability of not

observing a saddle-shaped region of the object’s surface, for instance, is reduced.

The most isolated direction is determined using a spherical Voronoi diagram. The Voronoi diagram is a
division of the surface of a sphere into cells, based on the positions of a set of site points on the sphere. Each
cell surrounds exactly one site point so that each point within the cell is closer to the site point contained in
the cell than to any other site point. Each viewing direction is specified by a pair of antipodal points on the
viewing sphere: these are the site points.

To determine the most isolated point from a set of site points on a sphere of any dimension, only the vertices
of the Voronoi diagram need be considered, since for any non-vertex point there will be a Voronoi vertex point
that is more isolated. The most isolated camera direction is therefore computed, for a given set of viewing
directions, by finding the Voronoi vertex whose closest site point is further than for any other Voronoi vertex.

Spherical Voronoi diagrams can be easily computed for spheres in any dimension. The procedure is illus-
trated in Figure 5.3. Tangent planes at site points must be considered. The intersections of the halfspaces
specified by the tangent planes is a convex polyhedron. The halfspace intersection can be formed by com-
puting the convex hull in dual space, i.e., by treating the homogeneous representation of the tangent planes
as points. The dual of the dual space polyhedron is the required polyhedron (Figure 5.3b). The Voronoi
diagram is formed by projecting the polyhedron vertices onto the sphere (Figure 5.3c). The connectivity of
the diagram is given by the connectivity of the polyhedron. This method of computing Voronoi diagrams
using convex hulls in a higher dimension was introduced by Brown [19].

5.2.3 Configuration Optimisation Results

Both objective functions were optimised using Matlab’s Nelder-Mead simplex method [28]. Starting points
for camera positions on a sphere were chosen by randomly selecting points from a subdivided icosahedron.
Four subdivisions of the icosahedron were performed to obtain 812 points that are well-distributed on a
sphere. The objective function was evaluated for 1000 different randomly selected point sets, and the best
of these point sets was used as a starting point for an optimisation. This procedure was repeated 1000 times,
and the best result was selected. Multiple applications of this approach produced the same sets of relative
camera positions. Figure 5.4 illustrates camera configurations optimised with the direction isolation criterion
and with the frontier point criterion. Antipodal pairs of points on the unit sphere indicate camera directions,
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./figures/calib/VoronoiBall1b.eps

(a)

./figures/calib/VoronoiBall2b.eps

(b)

./figures/calib/VoronoiBall3b.eps

(c)

Figure 5.3: Procedure for computing the Voronoi diagram on a sphere: (a) a sphere with some site points in colour, (b) a polyhedron
formed by intersecting all halfspaces defined by tangent planes to the site points, (c) the Voronoi diagram formed by projecting the
polyhedron vertices onto the sphere; the connectivity of the diagram is given by the connectivity of the polyhedron. Surface regions
on the Voronoi diagram are coloured according to the nearest site point.
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Figure 5.4: Camera configurations with camera directions represented by spheres of the same colour: (a) optimal 3-camera di-
rections for both direction isolation and frontier point criteria, (b) optimal 4-camera directions for direction isolation criterion, (c)
optimal 4-camera directions for the frontier point criterion, (d) optimal 6-camera directions for both direction isolation and frontier
point criteria, (e) optimal 10-camera directions for direction isolation criterion, (f) optimal 10-camera directions for frontier point
criterion.
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and regions on the sphere are coloured to correspond to the closest camera direction. For certain numbers of
cameras, the two camera positioning criteria produce different configurations, whereas for other numbers of
cameras, one configuration is optimal for both criteria.

Notably, the direction isolation and frontier point criteria both produce the same configuration for six cameras
(see Figure 5.4d). This configuration was therefore chosen for the six-camera setup used in this thesis.

In the case of the frontier point criterion, 3-, 4-, 6-, and 10-camera setups correspond to the directions
specified by the face normals of the Platonic solids. (The regular tetrahedron and the regular octahedron both
correspond to the same 4-camera setup.) In the case of the direction isolation criterion, the 3- and 6-camera

setups correspond to Platonic solids, whereas the 4- and 10-camera setups do not.

Camera configurations optimised using the frontier point criterion are illustrated in Figure 5.5. The corre-
sponding frontier points on a sphere are shown in Figure 5.6.

Although only the six-camera setup was physically realised, the camera configurations consisting of different
numbers of cameras are used in this thesis for several experiments using synthetically generated data. This
enables investigation of the performance of various algorithms with different camera configurations.

The best configuration of the two-mirror setup was also determined by the optimisation using the direction
isolation criterion. It is a symmetrical setup with 72◦ between the mirrors and the camera tilted at 42.0◦.
This produces a most isolated direction that is 48.0◦ from the closest viewing direction. This is only 2.1◦

larger than the optimal most isolated direction that can be achieved from any five viewing directions.

5.3 Camera Calibration

Multi-view, silhouette-based particle analysis applications such as particle size and shape analysis, and in-
dividual particle recognition require accurate camera calibration. The internal and pose parameters of each
camera in a multi-camera setup must be estimated so that the 3D ray corresponding to any 2D image location
is known in a common reference frame.

In earlier work [45], a calibration method was developed using a calibration object with coded marker pat-
terns. Figure 5.7 shows two examples of the calibration objects with coded marker patterns. The circular
markers are identified by their code bands, and the camera internal and pose parameters are inferred from

the positions of the imaged markers across multiple images.

Here, a different approach to calibration is described. A sphere (typically a ball bearing) is passed through
the multi-camera setup several times, and several image sets are captured. Pose and internal parameters are
then inferred from the images of the ball. This approach of using ball bearings to calibrate the multi-camera
setup has several advantages over using a calibration object with coded targets:
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(b) 4 cameras
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(c) 5 cameras
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(d) 6 cameras
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(e) 7 cameras
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(g) 9 cameras
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(h) 10 cameras

Figure 5.5: Camera setups optimised with the frontier point criterion. The n cameras (green) are shown together with the 2n-faced
polyhedra representing each camera configuration. The polyhedra are shown as a casing on which the cameras are mounted and as
a positioning aid at the centre of the casing, with the cameras looking onto the parallel face pairs. The setup in (a) is based on the
geometry of a cube; this is the configuration used by the University of Illinois Aggregate Image Analyser [108]. The six-camera
setup used in this thesis is configured as in (d). Note that (a), (b), (d), and (h) show Platonic solids.
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Figure 5.6: Positions of frontier points on a sphere for camera setups optimised with the frontier point criterion. The images
correspond to the images shown in Figure 5.5.
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(b)

Figure 5.7: Two examples of calibration objects with coded targets: (a) a cube with 54 targets and 9-bit code bands, (b) an
icosahedron with 60 targets and 10-bit code bands.

1. Unlike calibration using coded marker patterns, calibration using balls makes use of silhouette images.
This means that there is no need for front lights to illuminate object surfaces. Ball calibration therefore
has the potential to reduce the complexity of a multi-camera setup by removing the need for two sets
of lights; only the back lights that are already required for creating silhouette images of particles are
needed.

2. By using objects that fall off the feeder (balls) instead of moving a calibration object in front of the
cameras, the appropriate 3D region is calibrated. Since the calibration parameters are to be used with
objects that fall off the feeder, appropriate coverage is achieved.

3. Since the shape of the balls is known in advance, the silhouettes boundaries can be robustly detected
from within images: the image of a sphere is a conic section, and can be closely approximated by a

circle in many practical imaging configurations.

4. Unlike calibration objects with coded marker patterns, ball bearings of many sizes are inexpensive and
readily available.

5. Balls can be used to calibrate common fields of view that are too small for coded marker patterns to

be used. It is impractical to create a calibration object with coded marker patterns that is much smaller
than an inch in diameter. However, small ball bearings can be used with relative ease.

Camera calibration is carried out by adjusting all camera parameters simultaneously to minimise the ET error
across all observed silhouette sets using the Levenberg-Marquardt method. Although this approach can be
carried out using silhouette sets of stones rather than silhouette sets of a ball, using a ball instead of stones
provides two advantages:
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1. The ball images provide an effective means for computing initial parameter estimates. Without good
initial parameter estimates, Levenberg-Marquardt optimisation may converge to a local minimum that
is far from the global minimum.

2. Minimisation of ET error across all silhouette sets does not determine absolute scale. A ball of known
size provides a convenient means for enforcing absolute scale.

5.3.1 Related Work

Early works on camera calibration (within the field of computer vision), such as Tsai’s method [130], rely on
control points with accurately known 3D coordinates. In the 1990s, self-calibration methods were developed
for computing camera parameters from correspondences of points with unknown 3D coordinates. One of
the original self-calibration methods was developed by Tomasi and Kanade [129] for orthographic cameras.

Although the method has been extended in various ways to a perspective camera model [56,115], the method
described in this chapter uses the Tomasi-Kanade method to establish initial camera parameters. This is
because the perspective modelling methods are unstable if the degree of perspective distortion in a scene is
small. By using images of a ball, it is easy to closely approximate multiple point correspondences that would
be observed by orthographic cameras with the same viewing directions as the actual cameras.

Practical methods for calibrating multi-camera setups based on self-calibration point correspondences have
been described in the computer vision literature. For instance, Svoboda et al. [122] calibrate a multi-camera
smart room. Their system consists of four cameras that share a large common field of view. Point correspon-
dences across multiple views are obtained by having a person move a laser pointer around the common field
of view.

Following the analysis of the generalisation of the epipolar constraint to include silhouettes [3], there has
been interest in calibrating multi-camera setups using silhouettes. Sinha and Pollefeys [120] make use of

outer epipolar tangents to calibrate a network of cameras using silhouettes. Random sampling is used to
identify consistent corresponding epipolar tangencies to use for computing initial parameter estimates. Since
the six-camera setup considered in this chapter is a highly controlled environment, it is not necessary to
resort to random sampling to estimate initial parameters, since multiple point correspondences can easily be
generated using a ball.

The computer vision literature describes several approaches to calibrating cameras using spheres. Shivaram
and Seetharaman [118] point out that the major axis of an elliptical projection of a sphere always passes
through the principal point. Using this observation, they derive equations for camera poses and internal
parameters, and test their method with synthetic images.

Xu et al. [128,140] show how internal and pose parameters can be estimated separately using linear methods.
The solution is then globally refined using the Levenberg-Marquardt method.
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Agrawal and Davis [1] describe a method for multi-camera calibration using spheres. They use a dual
space approach and solve the camera parameters using semi-definite programming (an extension of linear
programming where positive semi-definiteness constraints are used on matrix variables). The method appears
to solve the same problem addressed in this chapter.

These approaches provide alternatives to the approach that was used, which was chosen for its relative
simplicity. A possible problem with the above approaches is that the perspective distortion in individual
images is low: imaged balls appear as circles. This makes it difficult to resolve the relationship between
depth and focal length from individual images. The method that was used is able to resolve these factors by
considering multiple ball images in which the ball position varies somewhat. To a good approximation, the
ball projections appear as circles of varying size, allowing depth and focal length to be estimated.

5.3.2 Preprocessing

The calibration routine requires the same ball to be passed through the six-camera setup several times. Usu-
ally approximately 20 image sets are captured. A background image is also captured for each camera.

The first step of the calibration procedure is to compute threshold values to use for threshold-based seg-
mentation. This is done using Otsu’s method which minimises the intra-class variance of pixel intensity
values [105]. Polygonal ball boundaries are extracted from each image using the same threshold-based seg-
mentation routine that is to be used for subsequently extracting stone silhouette boundaries. The routine is
described in Appendix A.

A circle is fitted to each ball boundary. First, a linear least squares method is used to form an initial solu-
tion. This solution is then refined by minimising the sum-of-squared distances from the polygon vertices
to the circle. The fitted circles are used for determining initial parameter estimates; the original polygonal
boundaries are used for refining the solution.

5.3.3 Initial Parameter Estimate

The initial pose estimates are computed using the Tomasi-Kanade factorisation method. The method de-
termines 3D point locations and camera poses from orthographic projections. To estimate the orthographic
projections of the ball centres from the same viewing directions as the cameras, the radii of circles repre-
senting the imaged ball boundaries are used. By scaling the circles with the image centres as the origins
(i.e., assuming that principal points are at image centres) the scaled circle centres provide a close approxima-
tion to the orthographic projection that would be obtained from the viewing direction. The Tomasi-Kanade
method provides the 3D positions of the ball centres and the camera poses (although camera depths are not

given, since an orthographic projection is unchanged by a change in depth). However, there are always two
consistent solutions. To resolve the ambiguity, the circle diameters are again used. The solution that results
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in the circle diameter decreasing with ball depth is chosen. Orthogonal regression lines are fitted to the ball
depth and circle diameter values to compute the camera depth and focal length values.

Computing Approximate Orthographic Projection Coordinates

A good approximation of the orthographic projection of the ball’s centre is obtained from the camera’s pro-
jection of the ball. Since the distance from the ball to the camera is large with respect to the ball diameter,

and since wide angle lenses are not used, the ball boundary is a close approximation to a circle. The coordi-
nates of the orthographic projection of the ball centre (xc,yc) are estimated from the extracted circle centre
coordinates (uc,vc) as follows:

xc =
uc−u0

ri
(5.1)

yc =
vc− v0

ri
(5.2)

where (u0,v0) is the estimate of the principal point (the image centre is used) and ri is the radius of the
extracted circle in pixels. These equations produce coordinates that are in units of the ball radius.

Tomasi-Kanade Factorisation

This section briefly describes the Tomasi-Kanade factorisation method. Further details are given by Tomasi
and Kanade [129].

The first step is to move the origin to the centroid of the projected points. This removes the translational
component of the pose, since the projection of the 3D centroid of the 3D points is the 2D centroid of the 2D
point projections.

Next, a measurement matrix Ŵ is formed from the translated coordinates:

Ŵ =




x11 · · · x1m
...

. . .
...

xn1 · · · xnm

y11 · · · y1m
...

. . .
...

yn1 · · · ynm




(5.3)

The 2n rows of Ŵ correspond to the n cameras, and the m columns correspond to the m image sets of different
3D ball positions.
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Singular value decomposition is applied to Ŵ to give

UΣV T = Ŵ . (5.4)

The first three columns of U are used to form a motion matrix M̂. A shape matrix

Ŝ = Σ3V T
3 (5.5)

is formed from Σ3, the first three rows and columns of Σ, and V3, the first three columns of V . This results in
the factorisation

Ŵ = M̂Ŝ. (5.6)

The shape matrix and the motion matrix represent the 3D structure and camera poses up to an arbitrary affine
transformation. In other words, any arbitrary affine transform of the 3D structure yields a consistent solution.

The true motion matrix M has rows that are unit vectors, and the corresponding rows in the upper and lower
halves of the matrix are orthogonal. To enforce these constraints, a matrix A is sought such that

M = M̂A (5.7)

S = A−1Ŝ, (5.8)

and A enforces the metric constraints

iTr AAT ir = 1 (5.9)

jT
r AAT jr = 1 (5.10)

iTr AAT jr = 0, (5.11)

where iTr is the rth row of M and jT
r is the (r + n)th row of M. These constraints are imposed using linear

least squares to determine Q, where
Q = AAT . (5.12)

Once Q is determined, Cholesky factorisation is used to determine A. (Tomasi and Kanade use nonlinear op-
timisation to determine A directly; the approach of using Cholesky decomposition is described by Weinshall
and Tomasi [134].) If the matrix Q is not positive definite, then Cholesky decomposition cannot be applied.
This will occur if the system becomes completely overwhelmed by noise.

The rotation matrices associated with each camera have rows iTr , jT
r and kT

r where

kT
r = iTr × jT

r . (5.13)

In the presence of noise, these matrices will not in general be orthonormal. The singular value decomposition
is used to enforce orthogonality: the diagonal matrix in the decomposition is replaced by the identity matrix.
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Resolving the Reflection Ambiguity

There is an inherent ambiguity in the solution to the camera poses and 3D point positions: two solutions
are consistent with the observed orthographic projections. The two solutions correspond to A and −A both
providing consistent solutions. Figure 5.8 shows an example of two scenes in which both sets of cameras
capture the same orthographic projections. The ambiguity arises because a positive rotation of a point in
front of a centre of rotation cannot be distinguished from a negative rotation of a point behind the centre of
rotation [18].

./figures/calib/CamPointsCase1.eps ./figures/calib/CamPointsCase2.eps

Figure 5.8: Two consistent setups for a set of observed orthographic point projections. Note that the camera icons represent viewing
directions; the position of the camera parallel to the viewing direction is inconsequential.

To resolve the ambiguity, each of the two possible solutions is considered in turn. For each camera, the
imaged circle radius should be inversely proportional to the associated depth, since for a weak perspective
projection

ri =
f rw

z
, (5.14)

where f is the focal length, rw is the ball radius, and z is the depth. World coordinates are measured in terms
of rw, therefore rw = 1. Camera depths are unknown at this stage and are set to zero.

The correlation coefficient of the radius inverses and the depths are computed for each camera. The solution
that produces the largest positive correlation coefficient is selected. (In the noise-free case, the true solution
will produce correlation coefficients of +1 and the incorrect solution will produce correlation coefficients of
−1.)
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Estimating Focal Length and Depth Values

The depth of the cameras and the focal lengths are computed by fitting an orthogonal regression line to the
radii inverses and depth values (with all cameras initially positioned at z = 0).

The slope of the regression line gives the focal length and the negative of the intercept is the camera depth.

5.3.4 Parameter Refinement

The initial parameter estimate is refined by using the Levenberg-Marquardt method to adjust all calibration
parameters to minimise the sum of residual ET errors across all silhouette sets.

Since each camera pair generates two outer frontier points, each of which is imaged by each camera, each
camera pair generates four residual ET error values. The 15 camera pairings from six cameras therefore
generate 60 residual ET error values per image sets; there are 60k residual values for k image sets. The
calibration parameters for each camera consist of 10 parameters per camera: three for the internal parameters
( f , u0, and v0), and seven pose parameters (a quaternion to represent orientation, and a three element vector
to represent position). (The four element quaternion overparameterises the orientation which has only three
degrees of freedom.) In total, 60 calibration parameters are therefore adjusted to minimise the sum of square
residual error over 60k residual values. Note that further parameters that model, for instance, radial or
tangential lens distortion could be added at this stage (with initial values of zero). However, the lenses
used did not exhibit significant distortion, and initial experimentation showed no benefit in including lens
distortion terms.

Since six cameras are used and pixels are modelled as squares, there are sufficient constraints to calibrate
up to only a single unknown scale factor [58]. (Fewer cameras or unknown pixel skew and aspect ratios can
lead to cases in which calibration can only be carried out to a projective transform.)

Scale is enforced subsequent to the Levenberg-Marquardt minimisation using the prior knowledge of the ball
diameter. Linear Euclidean triangulation [58] is used to determine the 3D position of the ball centre from
the circle centres of the images in each set. The ball diameter dworld implied by the model is then estimated
from each image using

dworld =
z
f

dimage, (5.15)

where dimage is the diameter of the circle in the image, z is the z-coordinate of the ball position in the camera’s
reference frame (i.e., the depth) and f is the camera focal length in pixels. This is a weak perspective
approximation that assumes that the rim (i.e., the contour generator that projects to the ball boundary in the
image) is at the same depth as the ball centre. This is a good approximation since the ball diameter is small
with respect to the distance to the camera centre. Camera positions are scaled to enforce absolute scale so
that the mean computed ball diameter is equal to the known value.
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5.3.5 Experiments

The calibration method was tested using 20 image sets of a 5.54 mm ball bearing. Figure 5.9 shows a six
image set of a garnet, with projected epipolar tangents derived using the computed calibration parameters.
The accuracy of the computed calibration parameters affects how close the projected tangents are to being
tangential to the silhouettes: in the noise-free case the epipolar tangency constraint specifies that the projected
tangents are tangent to the silhouettes.

./figures/calib/GarnetImage00001.eps./figures/calib/GarnetImage00002.eps./figures/calib/GarnetImage00003.eps

./figures/calib/GarnetImage00004.eps./figures/calib/GarnetImage00005.eps./figures/calib/GarnetImage00006.eps

Figure 5.9: An example of a six-image set of a garnet. The epipolar tangents from each image are projected onto the remaining
five images. The projected epipolar tangents are ideally tangent to the silhouettes; for real data that is not noise-free they are almost
tangential.

To quantify the accuracy of the proposed calibration routine and to investigate how calibration accuracy
varies with the number of ball image sets used, calibration was applied using randomly selected subsets of
the ball image sets. The accuracy of the calibration was then quantified by using the computed calibration
parameters to calculate the RMS ET error computed over 100 silhouette sets of garnets. Results are presented
in a plot in Figure 5.10. The plot indicates that RMS ET errors of less than 0.4 pixels can be achieved if a
sufficient number of ball image sets is used for calibration. The results also demonstrate that the parameter
refinement by minimising ET error improves the accuracy of calibration parameters. The improvement is
largest when a small number of balls is used, but is still significant when 15 ball image sets are used.

Calibration based on six ball sets was compared with calibration using 30 image sets of a calibration ob-
ject [45]. The calibration object is illustrated in Figure 5.7b. During the calibration procedure, 2996 control
points were located across the 30×6 = 180 input images. Silhouette sets of 98 uncut gemstones were used
as a test set. ET errors for the 98 silhouette sets are plotted in Figure 5.11. Similar accuracy is observed for
the ball-based calibration parameters and the calibration object parameters with RMS ET error values over
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./figures/calib/BallSetsEtErrorPlot.eps

Figure 5.10: RMS ET error computed over a test set of 100 six-view silhouette sets of garnets using different calibration parameters.
Each data point corresponds to the RMS ET error over 100 silhouette sets. Calibration parameters were determined from ball image
sets randomly selected from 20 available image sets.

./figures/calib/VcalEtErrorPlot.eps

Figure 5.11: Internal ET error for 98 uncut gemstones computed using initial parameter estimates, optimised parameter estimates,
and parameters computed using a calibration object.
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all 98 silhouette sets of 0.667 pixels and 0.671 respectively. The initial parameter estimates produced an
RMS ET error of 2.18 pixels over the 98 silhouette sets.

The ET error computed on a test set of stones provides no indication of the accuracy of scale enforcement,
because the ET error is invariant to the absolute scale enforced. To quantify the performance of scale en-
forcement, it is necessary to image objects of known size. Image sets of three different sized balls were used
to determine the accuracy of scale enforcement.

Table 5.1 shows the results of using the image sets of one ball for calibration, and then estimating the ball
diameters of all three balls using the computed calibration parameters with scale enforced using the known

diameter of the calibration ball. The diagonal of the table shows ball diameters that are exact, as the same
ball image sets are used for calibration and for testing in these cases. The table indicates that the typical
difference between estimated ball diameters the ground truth values is approximately 10 microns.

5.54 mm 8.73 mm 10.50 mm
ball ball ball

5.54 mm 5.540 mm 8.741 mm 10.502 mm
calibration (0.007 mm) (0.021 mm) (0.013 mm)
parameters 0% +0.126% +0.019%
8.73 mm 5.527 mm 8.730 mm 10.488 mm

calibration (0.011 mm) (0.028 mm) (0.018 mm)
parameters -0.237% 0% +0.114%
10.50 mm 5.531 mm 8.738 mm 10.500 mm
calibration (0.011 mm) (0.029 mm) (0.017 mm)
parameters -0.162% +0.091% 0%

Table 5.1: Mean estimated ball diameters (with standard deviation over all image sets considered in brackets) for balls computed
with calibration parameters determined from different sized balls. Percentage errors are shown in bold face. Nine image sets were
used for the 5.54 mm ball; nine image sets were used for the 8.73 mm ball; and seven image sets were used for the 10.50 mm ball.

5.4 Summary

This chapter has described the geometric configuration of the multi-camera setup used for much of the work
described in this thesis, and has presented the ball-based method used to calibrate the cameras.

Although some justification has been given for the choice of objective functions used for optimising the cam-
era configurations, the objective functions are essentially ad hoc. This is the case because the multi-camera
setup is to be used for several different applications whose performance can be measured in different ways,
so the goal is to find a configuration that will be desirable for all applications. Two different approaches
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(the frontier point criterion and the direction isolation criterion) yield the same configuration for six cam-
eras. This configuration corresponds to viewing directions that are parallel to the face normals of a regular
dodecahedron (one of the five Platonic solids).

Ball-based calibration produces ET errors of less than a pixel for image sets of garnets and gemstones.
Approximately the same ET errors are obtained using a calibration object with coded targets.

The following chapters will quantify the performance that can be achieved for shape property estimation and
matching applications using the camera configuration and calibration method described in this chapter.
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Chapter 6

Merging Silhouette Sets

6.1 Introduction

This chapter describes a simple but effective method for merging two silhouette sets of the same rigid object
into a single large silhouette set where all silhouette poses are specified in a common reference frame. The

single large silhouette set allows a more accurate estimate of the 3D shape of the object to be made than
either of the original silhouette sets.

The same method can be used to merge further silhouette sets of the object in different poses with the merged
silhouette set. This allows an arbitrary number of silhouette sets of an object to be merged into a single large
silhouette set.

The problem addressed in this chapter is another silhouette-based self-calibration problem. Here, it is the
external camera parameters (i.e., pose parameters) rather than internal camera parameters that must be
estimated. The approach taken here is the same as for the self-calibration problems addressed in Chap-
ters 4 and 5: use the problem-specific constraints to obtain initial parameter estimates, and then refine the
parameter estimates by minimising the ET error across silhouette pairs. The unknown parameters that are to
be inferred from the two silhouette sets describe the relative pose between the two silhouette sets.

To obtain an initial estimate of the relative pose, the approximate 3D shape of the corresponding stone is
estimated separately from each silhouette set. This can be done using the visual hull, or the VEMH as
an estimate of 3D stone shape. The moments of the 3D shape are then used to estimate the components
of relative pose between the silhouette sets. Centroids are used to estimate relative translation, principal
directions are used to estimate relative orientation, and third order moments are used to resolve the four-way
alignment ambiguity (since pairs of principal axes can be aligned in four ways).

This approach will be shown to work in most (but not all) cases for the silhouette sets of stones considered
in this work. The method fails in cases in which third order moments do not resolve the four-way alignment
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ambiguity of the principal axes, and in cases in which the principal axes of 3D approximations of the stone
provide a poor estimate of the relative orientation between silhouette set pairs. In these failed cases, the
initial parameter estimate does not lie within the basin of convergence of the optimal alignment parameters,
and a local minimum that lies far from the optimal solution is located by Levenberg-Marquardt minimisation.

To address this issue, pose optimisation is attempted from successive different starting points based on dif-
ferent initial pose estimates, and the pose estimate corresponding to the lowest ET error (i.e., the smallest
degree of silhouette inconsistency across the two silhouette sets) is selected. Initial pose estimates may be
based on all four alignments of pairs of principal axes, and on random sampling of orientation space.

A version of the work described in this chapter was presented as a conference paper [46].

6.2 Related Work

One of the earlier methods to create refined visual hull models by making use of two or more silhouette
sets of an object is described by Wingbermühle et al. [137]. The relative pose between silhouette sets is
determined by means of an optimisation procedure. The cost function is the mean squared distance between
surface points of the first visual hull and the closest surface points of the second visual hull. A starting point
for the optimisation is determined from the principal axes and centres of gravity (centroids) of the two visual
hulls. If the cost associated with the starting point is too high, then a heuristic approach is used: the relative
rotation is adjusted incrementally about each of the principal axes in steps of 15◦ until an adequate starting
point is found. Since the cost function is based on the visual hull rather than the observed silhouettes, there
is no reason to expect that the correct alignment should correspond to a cost function minimum, even with

exact silhouette sets.

Cheung et al. [26, 27] describe a method for determining rigid transforms for aligning image sets of the
same object in different poses. Although their goal is the same as for the method described in this chapter,
they make use of colour stereo matching in addition to silhouette information, whereas in this thesis only
silhouette images are considered. Their method involves using silhouettes to constrain the search for cor-
responding points along viewing edges (which they term bounding edges). Pose parameters are iteratively
adjusted to minimise a cost function based on colour consistency across image sets. Their setup therefore
requires objects and lighting such that (1) both silhouettes and foreground texture can be reliably measured
from images, and (2) colour and intensity varies as little as possible with viewpoint (i.e., a Lambertian model
must be a good approximation). This thesis takes a different approach, and lighting is set up to obtain the
best possible silhouettes at the cost of discarding foreground texture.

Cheung’s motivation for using colour information in addition to silhouettes is that alignment using silhouettes

is ‘inherently ambiguous’ [26]. To demonstrate the ambiguity, it is shown that more than one alignment of
certain specific noise-free silhouette set pairs is exactly consistent.
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Despite Cheung’s illustration of certain specific ambiguous cases, the view taken here is that there is no
need to discard the possibility of alignment based on silhouettes alone. Although certain specific cases are
inherently ambiguous, they are unlikely to occur in practice. This is especially so with arbitrarily oriented
natural objects such as stones, for which an ambiguous pair of silhouette sets arising by coincidental align-
ment appears to be close to impossible. Of course, real silhouette sets are noisy and are therefore inexact; it
is certainly plausible that attempting to align silhouette sets consisting of too few views or too much noise
may fail. This chapter will demonstrate that merged silhouette sets captured using the imaging setups con-
sidered in this work are sufficiently accurate to provide measurable improvement in estimates of size and
shape properties that are of interest to particle shape analysts.

Subsequent to our initial publication [46] of the method described in this chapter, Hernández [39] describes
a solution to the same problem in the context of creating refined visual hull models of museum pieces such

as ornamental pitchers. Calibrated sequences of silhouettes are captured using a turntable; this provides a
silhouette set of the object. The object is then reoriented on the turntable and another silhouette set is cap-
tured. The method of merging the silhouette sets is essentially the same as the approach described here: pose
and scale parameters are adjusted to optimise a measure of silhouette consistency. Instead of using ET error,
Hernández proposes an alternative measure of silhouette consistency that he terms silhouette coherence. Sil-
houette coherence measures the extent to which visual hull projections match the corresponding silhouettes.
This has the advantage of using more information contained within the silhouettes than the ET error, but
comes at the cost of having a discretised nature, and requires selecting the value of a tunable distance offset
parameter. Results demonstrate that the visual hull model formed from the merged silhouette set is a better
approximation to the shape of the object than visual hulls formed from either of the original silhouette sets.

Wong [138] describes merging individual silhouettes with silhouette sets. Since individual silhouettes are
used, approximate 3D models cannot be used to provide initial pose estimates, and initial pose estimates
must be provided by the user. The pose estimate is then refined by minimising ET error.

6.3 Moments for Initial Parameter Estimates

A triangular mesh model that approximates the 3D shape of the corresponding stone is computed for each
silhouette set. This is done using the visual hull or VEMH described in Chapter 3. The moments of the mesh
models are used to form initial parameter estimates for aligning silhouette sets of the same object.

6.3.1 Computing Moments from Triangular Meshes

The moments of the solid enclosed by a triangular mesh can be elegantly computed by visiting each triangle
and forming a polynomial function of the vertex coordinate values. The basis for the method is described by
Lien and Kajiya [81], and Zhang and Chen [143] derive explicit equations for third order moments. Mirtich
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[94] describes an alternative approach in which the Divergence Theorem is used to reduce volume integrals
to surface integrals. Zhang and Chen’s equations are presented in this section.

The moments of the solid enclosed by a mesh are defined as

Mpqr =
∫∫∫

xpyqzrρ(x,y,z)dxdydz, (6.1)

where ρ(x,y,z) = 1 for points inside the mesh, and ρ(x,y,z) = 0 for points outside the mesh.

The moment equations depend on a determinant T that must be computed for each triangular face:

T = x1(y2z3− y3z2)+ y1(x3z2− x2z3)+ z1(x2y3− x3y2). (6.2)

For convenience, the equations derived by Zhang and Chen are restated here (using a slightly different format
for clarity):

M000 = 1/6∑T (6.3)

M100 = 1/24∑T (x1 + x2 + x3) (6.4)

M110 = 1/120∑T (2x1y1 +2x2y2 +2x3y3 + x1y2 + x2y1 + x2y3 + x3y2 + x3y1 + x1y3) (6.5)

M200 = 1/60∑T (x2
1 + x2

2 + x2
3 + x1x2 + x2x3 + x1x3) (6.6)

M300 = 1/120∑T (x3
1 + x3

2 + x3
3 + x2

1(x2 + x3)+ x2
2(x1 + x3)+ x2

3(x1 + x2)+ x1x2x3). (6.7)

The summation sign indicates summation over all triangles that make up the mesh. The triangle vertices
are (x1,y1,z1), (x2,y2,z2) and (x3,y3,z3). Since triangles share vertices with other triangles, vertices will
be visited on multiple occasions. The equations for the other relevant moments can be inferred from the
equations given above.

To determine an initial estimate of the relative pose between two silhouette sets A and B, the centroid and
principal axes are computed for each of the two meshes that are 3D approximations to the stone computed

from each silhouette set. For each mesh, a 4× 4 rigid transform matrix M that aligns the principal axes of
the mesh with the x-, y-, and z-axes is computed:

M =

(
R3R2 −c

0T 1

)
, (6.8)

where c is the centroid of the solid enclosed by the mesh, R2 is a rotation matrix that aligns the principal
axes, and R3 is a rotation matrix that is used to resolve the four-way alignment ambiguity.

Once rigid transform matrices MA and MB have been computed for the two silhouette sets A and B, the initial
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pose estimate Minit to transform from B’s world reference frame to A’s world reference frame is computed:

Minit = M−1
A MB. (6.9)

To compute M, the following steps are applied to each mesh. First, the mesh is translated so that its centroid
c lies on the origin. The centroid is calculated as

c =




M100

M010

M001


/M000, (6.10)

where M000 is the volume bounded by the mesh.

Next, a 3×3 matrix of second order moments (a covariance matrix) is constructed:

S =




M200 M110 M101

M110 M020 M011

M101 M011 M002


 . (6.11)

The columnwise eigenvectors e1, e2, e3 of this matrix are used to form a rotation matrix R2 = [e1 e2 e3]. The
mesh vertices are then multiplied by R−1

2 to align the principal axes of the mesh with the x-, y- and z-axes.
This is done so that the third order moments can be computed.

The two third order moments M003 and M030 are computed to resolve the four-way alignment ambiguity.
(This arises because e and −e are both valid eigenvectors.) The value of R3 is determined from the signs of

M003 and M030 as indicated in Table 6.1.

M003 > 0 M030 > 0 R3

no no 180◦ rotation about x-axis
no yes 180◦ rotation about y-axis

yes no 180◦ rotation about z-axis
yes yes 3×3 identity matrix

Table 6.1: Selecting R3 based on the signs of the third order moments M003 and M030.

This ensures that the composite rotation R3R2 aligns the original mesh so that M003 > 0 and M030 > 0.

In certain cases, the M003 and M030 values of the visual hull or the VEMH may not match the sign of the
M003 and M030 values of the stone. This is particularly likely to occur when the skewness of the volume
distribution along a particular principal axis is close to zero. These cases may result in silhouette set pairs
being out of alignment by 180◦. In order to find the next most likely alignments, a rotation of 180◦ about
the z- or y-axes can be used. These produce alignments in which the signs of either M003 or M030 will differ
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for a pair of visual hulls or VEMHs (though the values for the stone may share the same sign). To obtain
the fourth alignment in which the values of neither M003 nor M030 share the same sign across the two mesh
approximations, a 180◦ rotation about the x-axis is used (i.e., a 180◦ rotation about the y-axis followed by a
180◦ rotation about the z-axis).

6.3.2 Experiments Using Moment-Based Initial Estimates

Synthetic Data

Experiments on synthetic data were carried out to investigate the performance of moment-based estimates of
initial pose. Synthetic data has the advantage of having exactly known ground truth values for pose.

Refined visual hull models formed from a data set of garnets were used to create synthetic silhouette images.

The data set is illustrated on page 221 of Appendix C.

Exact polygonal silhouettes that were generated from projections of the mesh models were rasterised to cre-
ate synthetic digital images, and polygonal boundaries were extracted using a subpixel segmentation method
that is described in Appendix A. The resultant digital images were downsampled to create sets of images
at different resolution levels (see Figure 6.1). Synthetic data were generated for different configurations of

./figures/merging/Resampled4Silhouette00001Run01Cam01.eps

(a) 1/4 resolution

./figures/merging/Resampled8Silhouette00001Run01Cam01.eps

(b) 1/8 resolution

./figures/merging/Resampled16Silhouette00001Run01Cam01.eps

(c) 1/16 resolution

./figures/merging/Resampled32Silhouette00001Run01Cam01.eps

(d) 1/32 resolution

Figure 6.1: An example of a synthetic silhouette shown at four different resolution levels.

different numbers of cameras: 2-, 3-, 4-, 6-, and 10-camera configurations were investigated. The configura-
tions are based on the Platonic solids as illustrated in Figure 5.5. The synthetic 6-camera setup corresponds
to the configuration of the real 6-camera setup. Two runs of silhouette sets were synthesised for each case.
In each case the stone models were oriented using a uniform random rotation, and were positioned with their
centroids at the intersection of optical axes. Camera depths were based on the depths of the six real cameras
from the stones.

Pose optimisation was carried out using the Levenberg-Marquardt method. The orientational component of
pose was parameterised using quaternions. This eliminates potential gimbal lock problems at the cost of
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an extra parameter: the relative pose is parameterised with seven parameters, but has only six degrees of
freedom.

The ET error is computed across the two silhouette sets. This means that each silhouette pair in the first set
is paired with each silhouette in the second set.

Figure 6.2 shows empirical CDFs (cumulative distribution functions) for the angle between the computed
relative pose and the ground truth relative pose. The angle provides a useful single-number measurement of
the dissimilarity between two poses. This approach comes at the cost of discarding the positional component
of pose. At this stage, it is useful to consider the angle for investigating the behaviour of the proposed

pose optimisation method. Later in this chapter, practical application-based methods of accuracy will be
considered too.

The figure shows CDFs for the initial pose estimates (‘init’) as well as optimised pose estimates (‘opt’) for
initial estimates based on the moments of both the visual hull (‘VH’) and the VEMH. Results are shown for a
6-camera setup and experiments are repeated at different levels of image resolution. A nonlinear scale (based
on a sinusoidal transformation) is used for the horizontal axis. This aids visualisation, because interesting
portions of the CDFs occur near 0◦ and 180◦, whereas the CDFs tend to have almost constant value between
45◦ and 135◦. Also shown on each plot is the CDF corresponding to a uniform random orientation. The
plots on left side show the results of optimisations based on a single initial pose estimate in which third order
moments are used to resolve the four-way alignment ambiguity of the principal axes. The plots on the right
side show the results of pose optimisation in which four initial pose estimates based on the four alignments
of the principal axes are considered. The computed pose with the lowest ET error is selected.

The CDFs allow one to read off the proportion of cases where estimated poses are within a certain angular
displacement from the true pose. The plots on the left suggest that in approximately 80% of cases, optimisa-
tion based on a single initial pose estimate leads to a pose within two degrees of the true pose. The closeness
to the true pose improves with higher resolution silhouettes. The plots on the right show that approximately
98% of cases lead to a pose within two degrees of the correct pose when all four alignments of the principal
axes are considered. Although a threshold of two degrees is arbitrary, the horizontal sections of the CDFs
suggest that there is a large range of threshold angles for which these proportions are insensitive.

The plots indicate that the VEMH slightly outperforms the visual hull for alignments based on third or-
der moments, but performance is approximately the same when considering four initial estimates per case.
This suggests that the VEMH provides a better estimate of the skewness of the volume distribution of the
corresponding stone than the visual hull.

The results of experiments repeated with different numbers of cameras is shown in Figure 6.3. The plots

indicate that as the number of cameras is increased, the proportion of estimated poses that are close to the
true pose increases.

Figures 6.4 and 6.5 show plots of normalised ET error versus angle from the true alignment for the experi-
ments whose results are displayed in Figures 6.2 and 6.3 respectively. Normalised ET error is the RMS ET
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./figures/merging/PlotAngleBestThirdMomCameras6Res32.eps

(a) 1/32 resolution

./figures/merging/PlotAngleBestOfFourCameras6Res32.eps

(b) 1/32 resolution

./figures/merging/PlotAngleBestThirdMomCameras6Res16.eps

(c) 1/16 resolution

./figures/merging/PlotAngleBestOfFourCameras6Res16.eps

(d) 1/16 resolution

./figures/merging/PlotAngleBestThirdMomCameras6Res8.eps

(e) 1/8 resolution

./figures/merging/PlotAngleBestOfFourCameras6Res8.eps

(f) 1/8 resolution

./figures/merging/PlotAngleBestThirdMomCameras6Res4.eps

(g) 1/4 resolution

./figures/merging/PlotAngleBestOfFourCameras6Res4.eps

(h) 1/4 resolution

Figure 6.2: CDFs of angle between computed pose and ground truth pose for merging 6-view silhouette sets.The left column shows
results based on a single initial pose estimate based on moments up to order three. The right column shows results based on the best
(lowest ET error) of four initial pose estimates from the four possible alignments of principal axes.
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(a) 2 cameras

./figures/merging/PlotAngleBestOfFourCameras2Res4.eps

(b) 2 cameras

./figures/merging/PlotAngleBestThirdMomCameras3Res4.eps

(c) 3 cameras

./figures/merging/PlotAngleBestOfFourCameras3Res4.eps

(d) 3 cameras

./figures/merging/PlotAngleBestThirdMomCameras4Res4.eps

(e) 4 cameras

./figures/merging/PlotAngleBestOfFourCameras4Res4.eps

(f) 4 cameras

./figures/merging/PlotAngleBestThirdMomCameras10Res4.eps

(g) 10 cameras

./figures/merging/PlotAngleBestOfFourCameras10Res4.eps

(h) 10 cameras

Figure 6.3: CDFs of angle between computed pose and ground truth pose for silhouettes sets formed with different numbers of
cameras at 1/4 resolution.The left column shows results based on a single initial pose estimate based on moments up to order three.
The right column shows results based on the best (lowest ET error) of four initial pose estimates from the four possible alignments
of principal axes.



./figures/merging/PlotLogEtVsAngleCameras6Res4.eps

(a) 1/4 resolution

./figures/merging/PlotLogEtVsAngleCameras6Res8.eps

(b) 1/8 resolution
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(c) 1/16 resolution

./figures/merging/PlotLogEtVsAngleCameras6Res32.eps

(d) 1/32 resolution

Figure 6.4: Plots of normalised ET error versus angle between computed pose and ground truth pose for the 6-camera setups with
different resolution levels as considered in Figure 6.2.

./figures/merging/PlotLogEtVsAngleCameras2Res4.eps
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(d) 10 cameras

Figure 6.5: Plots of normalised ET error versus angle between computed pose and ground truth pose for the different camera setups
considered in Figure 6.3. The 1/4 resolution level is used.

residual error computed across the merged silhouette set pair divided by the RMS ET residual error computed
within each of the two silhouette sets. Since the six degrees of freedom of pose optimisation is small with
respect to the number of different outer epipolar tangent planes (2n2 for n cameras) that generate the residual
errors, the normalised ET should be close to one for correctly aligned silhouette set pairs. The plots show
two distinct clusters that correspond to correct alignment (low ET error and small angle to the true pose) and

incorrect alignment (high ET error and large angle to the true pose). Note that both axes are nonlinear: this
aids visualising the clusters on the bottom left that are substantially more compact than the clusters on the
top right.

In the case of two cameras (Figure 6.5a), two clusters are less distinct than for larger numbers of cameras. In
the case of three cameras (Figure 6.5b), two clusters are clearly visible, yet the bottom left cluster consists
of normalised ET errors less than one. This is evidence of overfitting: the 2×32 = 18 outer tangent planes
that generate ET errors across silhouette set pairs is not much larger than the six degrees of freedom of the
pose optimisation. For larger numbers of cameras, the normalised ET errors tend to cluster around a value
of one for the lower left cluster. The lower left cluster tends to become more compact and move towards an
error angle of zero, as image resolution is increased (Figure 6.4), and as the number of cameras is increased
(Figure 6.5).

The plots in Figures 6.4 and 6.5 indicate that ET errors tend to form two clusters, one of whose alignments

are substantially closer to the true alignment than the other. This supports the use of ET error to investigate
the behaviour of real data.
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Real Stone Images

Pose optimisation using moments for determining initial parameter estimates was applied to the data set of
images of 220 pieces of gravel, and 246 garnet stones. The pieces of gravel were imaged using the two-mirror
setup described in Chapter 4, and the garnets were imaged using the 6-camera setup described in Chapter 5.

Figure 6.6 illustrates the results of pose optimisation applied to two 5-view silhouette sets. Only one of the

two silhouette sets is shown. The five images are cropped out of the original image, since all five silhouettes
were captured in a single image using the two-mirror setup. (There is some overlap present in the second and
fourth images.) In this case, the computed pose appears to be close to the correct pose, since all the projected
tangents are approximately tangent to the silhouettes. The figure also shows projections of the 10-view visual
hull onto the original silhouettes. The visual hull projections come close to covering the original silhouettes.
This is consistent with a pose that is close to the true relative pose.

Figure 6.7 illustrates the results of pose optimisation applied to the same pair of silhouette sets, but from a
different starting point. The initial pose estimate used here causes the principal axes of the two VEMHs to
be aligned, but the third order moments do not have the same signs. In this case, pose optimisation appears
to have found a pose that is far from the true pose. The projected epipolar tangents are not approximately
tangent to the silhouettes (as indicated by red line segments), and the visual hull projections leave large
portions of the silhouettes uncovered. The silhouettes in the bottom row have been coloured using a distance
transform, so that the distance of uncovered portions from the silhouette boundary is apparent.

Figure 6.8 shows CDFs of ET error for the garnet and gravel data sets. Similar behaviour to the experiments
with synthetic data is observed. In approximately 80% of cases, for both the garnet and the gravel data, the
normalised ET error is below 2.0 when optimising pose from a single starting point based on third order
moments. The VEMH curves lie above the visual hull curves for both data sets, indicating that the VEMH
provides a better starting point. However, the two curves are similar in shape when using four starting
points based on four alignments of principal axes. The plots also show results computed using the CDRH to
approximate 3D stone shape. (The CDRH is defined in Section 3.4.2 on page 39.) The poor performance of
the CDRH demonstrates the importance of using varying rim depths as for the VEMH, rather than constant
depth rims. The additional complexity of computing the VEMH rather than the CDRH is therefore justified
in this context.

Qualitative Results for 3D Multimedia Content Creation

The proposed method of merging silhouette sets is useful not only for characterising stone shape, but also
for reconstructing the 3D shape of arbitrary objects for 3D multimedia content creation. Easily recognisable
shapes help to provide a qualitative demonstration of the effectiveness of the proposed method for creating
more accurate 3D reconstructions than can be made from any of the original silhouette sets.
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Figure 6.6: Correct alignment computed using moments up to order three for an initial pose estimate. The top row shows projected
epipolar tangents within the silhouette set in green, and across silhouette sets in blue. The bottom row shows silhouettes in colour
with 10-view visual hull projections in grey.
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Figure 6.7: Incorrect alignment. The top row shows projected epipolar tangents within the silhouette set in green, and across
silhouette sets in blue. Distances from the tangents to the silhouette are in red. The bottom row shows silhouettes in colour with
10-view visual hull projections in grey.
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(a) garnets, single starting point
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(b) garnets, 4 starting points
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(c) gravel, single starting point
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(d) gravel, 4 starting points

Figure 6.8: CDFs of normalised ET error computed using real image data. Dashed vertical lines indicate normalised ET error of 1.0.

Figure 6.9 shows an example of visual hulls formed from four 5-view silhouette sets. The images were
captured using a 5-camera setup that was a predecessor to the 6-camera setup described in Chapter 5. The
visual hull formed from the merged 20-view silhouette set is also shown. The merged silhouette set was
obtained by merging the silhouette sets one at a time. A final parameter adjustment of all pose parameters
using ET error computed across all silhouette pairs was found to result in negligible further reduction in ET
error. Notice that the 3D reconstruction of the wingnut from the merged silhouette set appears to be more
accurate than any of the original 5-view visual hulls.

Figure 6.10 shows another example, a toy cat, using images captured with a 5-camera setup. Again, the
20-view visual hull formed from the merged silhouette set appears to be a better 3D reconstruction than any

of the original 5-view visual hulls, each of which have substantial regions of extra volume. The figure also
shows the computed positions of the 20 silhouette views as well as the corresponding visual cones. Note
how the viewpoints provide a good coverage of the viewing sphere.
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./figures/merging/h_wingnut5A.eps./figures/merging/h_wingnut5B.eps./figures/merging/h_wingnut5C.eps./figures/merging/h_wingnut5D.eps
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Figure 6.9: Visual hulls of a wing nut. The top row shows four 5-view visual hulls. The bottommost illustration shows the refined
20-view visual hull obtained by merging the four 5-view silhouette set into a single large set containing 20 silhouettes.

The proposed method provides an alternative means for capturing silhouettes from many well-distributed
viewpoints using the two-mirror setup. In Chapter 4, a method was described in which the camera is moved
with respect to the mirror and object so that a good coverage of the viewing hemisphere can be obtained. The
proposed method provides another approach: the object is moved and the camera and mirrors stay fixed. This
requires a tripod or some other method of fixing the camera with respect to the mirrors. Figure 6.11 shows an
example in which three images of a toy moose are captured using the two-mirror setup. The figure illustrates
once more that a refined visual hull model formed from a merged silhouette set is a better reconstruction than
can be formed from any of the original silhouette sets.

An advantage of using the proposed method with the two-mirror setup is that images can be captured over the
entire viewing sphere (as opposed to a viewing hemisphere). This allows 3D reconstructions to incorporate
texture, and also allows foreground information to be incorporated for estimating 3D shape. Figure 6.12
shows an example in which a toy cheetah is modelled. For each object pose, two images are captured: one
with the backlight switched on to facilitate silhouette extraction, and another with no backlight to capture the
foreground texture of the object.

6.4 Estimating Shape Properties

This section describes several experiments that quantify the repeatability and accuracy with which shape

properties can be estimated using the proposed merging method. Readers who are not specifically interested
in shape property estimation may wish to skip this section, and continue reading Section 6.5 on page 128.

To address the problem of initial pose estimates that do not lead to sufficiently low ET error, the best opti-
misation based on 100 starting points formed with uniform random sampling of orientation space was used.
The large number of starting points ensures that a pose close to the true pose is likely found, but this comes
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Figure 6.10: Visual hull models of a toy cat: (a)–(d) four models each built from five silhouettes, (e) the model built from the 20
silhouettes used in (a)–(d) after the poses of all silhouettes have been determined in a common reference frame. The camera poses
corresponding to the twenty views are shown in (f), and the visual cones are shown in (g).

./figures/merging/Moose1.eps./figures/merging/Moose2.eps./figures/merging/Moose3.eps

./figures/merging/MooseRun1yrwlmv.eps./figures/merging/MooseRun2yrwlmv.eps./figures/merging/MooseRun3yrwlmv.eps./figures/merging/MooseAllyrwlmv.eps

Figure 6.11: Reconstructing the 3D shape of a toy moose. The top row shows the three input images, and the bottom row shows the
corresponding 5-view visual hulls. The rightmost visual hull is formed from the merged 15-view set.
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(a)
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Figure 6.12: Reconstruction of a toy cheetah by merging five 5-view silhouette sets. Input images were captured using two mirrors
and a backlight: (a) shows an example of a backlit image and (b) shows an example of the corresponding frontlit image. After
calibration and pose optimisation using silhouettes extracted from the backlit images, the frontlit images were used to build a photo-
consistent three-dimensional model. This was done with software created by Mathew Price (University of Cape Town) that is based
on the work of Vogiatzis et al. [132]. The software uses optimisation based on graph-cuts to compute a textured photo-consistent
mesh. Two novel views of the three-dimensional model with and without texture are shown in (c)–(f).
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at the cost of increased running time. In Chapter 9, where the pose optimisation is used for matching, a
framework is introduced that removes the need for specifying the number of starting points in advance.

To be useful in the context of particle shape analysis, the proposed method must produce silhouette sets for
which shape features can be estimated more accurately from the merged silhouette set than from any of the
original silhouette sets. The shape features measured from the merged silhouette set should also be more
accurate than the mean value computed from both original silhouette sets, otherwise the merging method is
not providing any benefit.

6.4.1 Volume Estimation with Synthetic Data

A set of volume estimation experiments was carried out using the synthetic garnet data. Synthetic data
provide two important advantages over real data: (1) exact ground truth is known for the stone volumes,
(2) the exact ground truth is known for the relative poses between silhouette set pairs. Knowing the ground
truth relative poses allows one to compare the accuracy of volume estimates based on inferred pose with
those computed using the actual pose. This provides an indication of how well the proposed method performs
compared with the optimal (i.e., exact) alignment.

Table 6.2 presents the results of the volume estimation experiments for a synthetic six-camera setup. The
table shows the mean percentage error of volume estimation using volumes of the visual hull or VEMH as
estimates of stone volume. (The VEMH can be used because the synthetic stones are convex.) The mean
percentage error gives an indication of the systematic error associated with a volume estimate. Since the
visual hull is an upper bound for the volume of the stone that produced the silhouettes, the volume estimates
tend to be overestimates and the percentage errors are therefore positive. However, when computed using
noisy data, cone intersections will erroneously carve away extra volume, yet cannot add extra volume. This
means that with sufficient noise, the visual hull-based volume estimates become underestimates. This is the
case with the rightmost column in which the images have the greatest degree of downsampling.

The table shows RMS percentage errors for volume estimates computed using the equation

Vest = kVshape, (6.12)

where Vest is the volume estimate, Vshape is the volume of the 3D approximation to the stone (either the visual
hull or the VEMH), and k is a constant selected such that the mean percentage error is zero. The constant k is
used to remove the systematic component of error. (Since visual hulls will consistently overestimate volume,

it makes sense to correct for this bias.) The value of k is estimated from the data. This biases the computed
error downwards, but since the one degree of freedom is small with respect to the number of samples (246),
this bias is negligible. The approach of bias removal using multiplication by a constant determined from the
data will be used for further shape property estimation in this chapter.
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Confidence intervals given in the table are computed using Efron’s bias-corrected and accelerated bootstrap
method [36]. (This method is used for all the confidence intervals presented in this thesis.)

The table indicates that the proposed method provides volume estimates close to those obtained using the
exact alignment. For the higher resolution images, the merged silhouette sets provide better volume estimates
than the original silhouette sets from which they are formed. The mean of the volume estimates from the
pairs of original silhouette sets provides a better volume estimate than the original silhouette sets, but at
sufficiently high resolution it is not as accurate as the estimates from merged silhouette sets.

VEMHs provide more accurate volume estimates than visual hulls for higher resolution images, but not for

lower resolution images. This is because at lower resolution, substantial portions of cone strips are destroyed,
resulting in large regions in which there are no midpoints. This reduces the volumes of the computed VEMHs
and increases the volume variance, since cone strip regions are destroyed at random.

The table also shows volume estimates based on the geometric and arithmetic means of the silhouette areas.
(All of the silhouettes for the merged silhouette sets are used, i.e., 12 silhouettes per stone for the results
shown in Table 6.2.) To remove the effect of depth on silhouette size, the depth z of the visual hull centroid
is used. Silhouettes are specified in normalised image coordinates and then multiplied by the depth factor z.
This closely approximates an orthographic projection since the depth of the stone is large with respect to the
depth variation of points on the rim and the visual hull centroid.

The volume estimate VΣ based on the arithmetic mean is computed as follows:

VΣ = kΣ

n

∑
i=1

A3/2
i , (6.13)

where Ai is the area of the ith silhouette, and kΣ is an empirically determined constant.

The volume estimate VΠ based on the geometric mean is computed as follows:

VΠ = kΠ

n

∏
i=1

A3/2n
i = kΠ exp

(
3/2n

n

∑
i=1

lnAi

)
, (6.14)

where kΠ is an empirically determined constant.

The factors of 3/2 in Equations 6.13 and 6.14 ensure a linear relationship with volume for parallel projections
of a set of objects with the same shape and orientation, but varying size. In practice, variation in object shape
and orientation is the main source of error.

Table 6.2 indicates that volume estimates based on silhouette area are less affected by image resolution
reduction than the visual hull- and VEMH-based estimates. For higher resolution cases, the area-based esti-

mates perform worse than the competing methods, whereas at the lowest resolution considered, the geometric
mean of area provides a more accurate volume estimate than those derived from the merged silhouette sets.
Arithmetic mean is the approach to volume estimation investigated by Taylor [126].
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1/4 resolution 1/8 resolution 1/16 resolution 1/32 resolution
quality 922.7 483.6 213.9 86.4

ET error 0.201 pixels 0.380 pixels 0.863 pixels 2.125 pixels
merged +3.70% +3.38% +1.47% -8.32%

pose est. 1.28% 1.30% 1.61% 5.34%
VH (1.12%,1.49%) (1.15%,1.50%) (1.45%,1.82%) (4.89%,5.86%)

merged +3.70% +3.37% +1.45% -8.38%
true pose 1.28% 1.31% 1.62% 5.41%

VH (1.13%,1.48%) (1.15%,1.50%) (1.45%,1.83%) (4.94%,6.02%)
merged +1.20% +0.63% -2.08% -14.76%

pose est. 0.95% 1.00% 1.70% 7.13%
VEMH (0.83%,1.11%) (0.88%,1.14%) (1.55%,1.88%) (6.52%,7.89%)
merged +1.19% +0.62% -2.09% -14.71%

true pose 0.94% 0.99% 1.71% 7.33%
VEMH (0.83%,1.10%) (0.88%,1.12%) (1.56%,1.88%) (6.66%,8.20%)

Run 1 +8.37% +8.15% +6.74% -0.66%
6-view 2.13% 2.15% 2.25% 4.06%

VH (1.88%,2.55%) (1.90%,2.54%) (2.01%,2.59%) (3.73%,4.44%)
Run 2 +8.21% +8.00% +6.54% -0.90%

6-view 2.14% 2.17% 2.30% 4.34%
VH (1.96%,2.36%) (1.97%,2.40%) (2.09%,2.53%) (3.96%,4.76%)

mean of +8.29% +8.07% +6.64% -0.78%
Run 1+2 1.67% 1.70% 1.83% 3.85%

VH (1.50%,1.93%) (1.53%,1.97%) (1.66%,2.07%) (3.56%,4.19%)
Run 1 +1.72% +1.39% -0.44% -9.83%

6-view 1.92% 1.94% 2.14% 5.36%
VEMH (1.71%,2.24%) (1.74%,2.25%) (1.95%,2.41%) (4.94%,5.83%)

Run 2 +1.56% +1.25% -0.56% -10.13%
6-view 1.93% 1.99% 2.17% 5.80%
VEMH (1.76%,2.12%) (1.81%,2.19%) (1.97%,2.40%) (5.32%,6.42%)

mean of +1.64% +1.32% -0.50% -9.98%
Run 1+2 1.54% 1.58% 1.79% 5.25%

VEMH (1.40%,1.75%) (1.44%,1.77%) (1.63%,1.97%) (4.83%,5.72%)
geometric 4.41% 4.40% 4.44% 4.95%

mean of area (3.77%,5.68%) (3.78%,5.73%) (3.83%,5.87%) (4.42%,6.00%)
arithmetic 5.71% 5.71% 5.75% 6.19%

mean of area (4.84%,7.48%) (4.86%,7.48%) (4.91%,7.50%) (5.41%,7.74%)

Table 6.2: Volume estimation using the six-view synthetic garnet data at various image resolution levels. Quality is the mean
silhouette diameter divided by the mean ET error. ET error is the mean internal ET error over all silhouette sets. Mean percentage
error is shown in italics. RMS percentage error is shown in boldface with 95% confidence intervals in brackets. Merged pose est.
indicates that silhouette set pairs were merged using the proposed method. Merged true pose indicates that the ground truth pose
value was used for merging. VH (visual hull) or VEMH indicates the method of 3D shape approximation used.
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Table 6.3 shows the results of the volume estimation experiment applied to synthetic data formed using
different numbers of cameras. Results for the two-camera setup clearly show that merging pairs of two-
view silhouette sets provides poses that are insufficiently close to the true pose to provide improvements in
volume estimation accuracy. Whereas the estimates based on merging using the true pose provide volume
estimates that are more accurate than the competing methods, merging using the estimated pose provides
volume estimates that are worse than the other corresponding hull-based methods. Increasing the number
of cameras to three offers a substantial improvement: the volume estimates computed using the estimated
pose are almost as accurate as those computed using the true pose. Increasing the number of cameras further
provides a far greater improvement in the accuracy of methods based on the visual hull and the VEMH than
the area-based methods.

6.4.2 Caliper Diameter Estimation with Synthetic Data

A further experiment to investigate the accuracy of caliper diameter estimation was carried out with the
six-view silhouette sets at 1/4 resolution level.

Ground truth values were determined for the shortest, intermediate, and longest diameters for the mesh

models of stones.

Table 6.4 presents the results of estimating caliper diameters from the visual hulls and VEMHs of merged
and original silhouette sets. Again, the estimates from the silhouette sets merged using the proposed method
produce results that are very close to the results obtained using the ground truth poses for alignment. The
proposed method also produces results that are more accurate than results that are computed from the original
silhouette sets. The table also indicates that the longest diameter can be estimated more accurately than the
shortest and intermediate diameters.

6.4.3 Mass Estimation with Data from the Two-Mirror Setup

The three runs of 5-view silhouette sets of the gravel data set were merged into 15-view silhouette sets using
the proposed method. Figure 6.13 shows some examples of the 15-view visual hull models and photographs
of the gravel from the same viewpoint (the photographs are cropped portions of the input images). Also
shown are the three 5-view visual hulls from the original 5-view silhouette sets. The figure shows a version
of the 15-view visual hull that is coloured according to which of the 5-view visual hulls share the surface
region. This demonstrates that each of the three silhouette sets tends to contribute at least somewhat to the
final 15-view visual hull.

Figure 6.14 shows some more examples of photographs of gravel and 15-view visual hulls rendered from the

same viewpoint. These figures provide a qualitative illustration of the degree of accuracy that one can expect
when using the two-mirror setup together with the proposed merging method. Since the visual hulls cannot
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2 cameras 3 cameras 4 cameras 10 cameras
merged +11.33% +8.93% +6.29% +2.10%

pose est. 9.52% 2.82% 2.36% 0.65%
VH (8.46%,11.21%) (2.52%,3.26%) (2.06%,2.75%) (0.57%,0.76%)

merged +17.22% +8.96% +6.29% +2.09%
true pose 6.01% 2.79% 2.35% 0.65%

VH (5.15%,7.88%) (2.48%,3.22%) (2.06%,2.75%) (0.57%,0.76%)
merged -5.70% +1.60% +1.62% +0.77%

pose est. 13.98% 2.71% 1.78% 0.48%
VEMH (12.40%,16.06%) (2.37%,3.27%) (1.57%,2.07%) (0.43%,0.56%)
merged +1.31% +1.66% +1.62% +0.77%

true pose 5.95% 2.55% 1.78% 0.48%
VEMH (5.11%,7.45%) (2.30%,2.94%) (1.56%,2.06%) (0.43%,0.56%)

Run 1 +41.10% +19.81% +14.24% +4.64%
6-view 7.57% 4.33% 3.99% 1.25%

VH (6.66%,9.43%) (3.71%,5.41%) (3.57%,4.62%) (1.11%,1.44%)
Run 2 +41.67% +19.46% +14.21% +4.60%

6-view 9.36% 4.18% 3.69% 1.18%
VH (7.26%,15.14%) (3.70%,5.40%) (3.37%,4.10%) (1.04%,1.46%)

mean of +41.38% +19.63% +14.23% +4.62%
Run 1+2 6.85% 3.39% 2.96% 0.93%

VH (5.27%,10.97%) (2.87%,4.49%) (2.68%,3.32%) (0.84%,1.06%)
Run 1 -26.99% -8.49% -0.75% +1.78%

6-view 7.65% 4.66% 3.99% 0.96%
VEMH (6.70%,9.92%) (3.94%,5.85%) (3.57%,4.57%) (0.86%,1.12%)

Run 2 -26.73% -8.68% -0.76% +1.73%
6-view 9.39% 4.71% 3.60% 0.93%
VEMH (7.30%,14.63%) (4.11%,6.38%) (3.30%,4.00%) (0.82%,1.10%)

mean of -26.86% -8.58% -0.76% +1.76%
Run 1+2 7.15% 4.16% 3.02% 0.72%

VEMH (5.52%,11.22%) (3.55%,5.54%) (2.72%,3.37%) (0.65%,0.81%)
geometric 10.14% 5.80% 4.93% 4.24%

mean of area (8.97%,12.78%) (4.84%,7.59%) (4.32%,6.08%) (3.66%,5.40%)
arithmetic 10.29% 6.38% 6.04% 5.67%

mean of area (9.17%,12.68%) (5.33%,8.31%) (5.21%,7.65%) (4.80%,7.32%)

Table 6.3: Volume estimation using the synthetic garnet data with different numbers of cameras at the 1/4 resolution level. Mean
percentage error is shown in italics. RMS percentage error is shown in boldface with 95% confidence intervals in brackets. Merged
pose est. indicates that silhouette set pairs were merged using the proposed method. Merged true pose indicates that the ground truth
pose value was used for merging. VH (visual hull) or VEMH indicates the method of 3D shape approximation used.
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Diameter Shortest Intermediate Longest
merged +1.82% -0.72% -1.11%

pose est. 3.06% 2.76% 1.05%
VH (2.49%,3.94%) (2.47%,3.14%) (0.94%,1.21%)

merged +1.81% -0.78% -1.13%
true pose 3.08% 2.80% 1.07%

VH (2.50%,3.96%) (2.51%,3.17%) (0.97%,1.24%)
merged +0.58% -1.63% -1.83%

pose est. 2.34% 2.89% 1.02%
VEMH (1.99%,2.80%) (2.49%,3.77%) (0.91%,1.19%)
merged +0.56% -1.71% -1.84%

true pose 2.35% 2.74% 1.06%
VEMH (2.03%,2.77%) (2.32%,3.69%) (0.95%,1.22%)

Run 1 +4.10% +1.07% +0.48%
6-view 4.93% 4.67% 1.42%

VH (4.22%,6.03%) (4.15%,5.36%) (1.29%,1.56%)
Run 2 +3.76% +0.61% +0.47%

6-view 4.38% 4.77% 1.46%
VH (3.84%,5.15%) (4.25%,5.50%) (1.33%,1.65%)

mean of +3.93% +0.84% +0.48%
Run 1+2 3.85% 3.72% 1.27%

VH (3.31%,4.60%) (3.36%,4.16%) (1.16%,1.42%)
Run 1 +1.68% -0.90% -1.12%

6-view 3.58% 3.18% 1.10%
VEMH (3.13%,4.36%) (2.76%,3.82%) (0.99%,1.23%)

Run 2 +1.54% -1.04% -1.17%
6-view 3.67% 3.05% 1.06%
VEMH (3.25%,4.26%) (2.64%,3.66%) (0.96%,1.18%)

mean of +1.61% -0.97% -1.15%
Run 1+2 3.03% 2.52% 0.91%

VEMH (2.65%,3.62%) (2.24%,2.88%) (0.82%,1.04%)

Table 6.4: Estimating the three caliper diameters using pairs of synthetic 6-view silhouette sets at the 1/4 resolution level. Mean
percentage error is shown in italics. RMS percentage error is shown in boldface with 95% confidence intervals in brackets. Merged
pose est. indicates that silhouette set pairs were merged using the proposed method. Merged true pose indicates that the ground truth
pose value was used for merging. VH (visual hull) or VEMH indicates the method of 3D shape approximation used.
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Figure 6.13: Some examples of visual hulls of pieces of gravel. The first column shows original images of the gravel. The second
column shows the 15-view visual hull (formed from three 5-view silhouette sets) from the same viewpoint as the first column. The
third column shows the 15-view visual hull surfaces coloured according to which of the three original 5-view visual hulls contributes
to the surface region. The three original visual hull models are shown to the right in corresponding colours.
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Figure 6.14: Images of pieces of gravel with visual hulls shown from the same viewpoint. The visual hulls were formed from three
images of the stones, yielding 3×5 = 15 silhouettes for each visual hull.
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model concavities, they exhibit regions of extra volume in certain places due to the lack of total coverage of
the viewing sphere, and they show some striations due to image noise. Nonetheless, these 3D shapes appear
to be likely to provide a better representation of particle shape than ellipsoidal models sometimes used in
simulations.

Visual hulls of gravel were used to estimate the mass of gravel particles. VEMHs were not used as the gravel
stones are nonconvex, whereas the VEMH approximates the convex hull of an object. The visual hull volume
is used to form a mass estimate mest as follows:

mest = cVVH, (6.15)

where c is an empirically determined constant and VVH is the visual hull volume. The constant c accounts for
both the tendency of the visual hull to be an overestimate of stone volume and an implicit estimate of gravel
density.

The mass estimates are limited by the extent to which gravel density varies from stone to stone. Attempts to
measure ground truth volume (using the Archimedes Principle: weigh each stone in air and, using a cradle,
underwater) rather than mass were abandoned, as the volume measurements were insufficiently repeatable.

Table 6.5 shows the results of gravel mass estimation. Note that unlike in the case of synthetic garnet data,
the accuracy that can be achieved is limited by both the variation in density from stone to stone, and the
variation in concavities from stone to stone. The table shows that the proposed merging method produces
somewhat more accurate mass estimation results than averaging the volume estimation results from the three
original silhouette sets. The table also indicates that the visual hull-based estimates are more accurate than
the area-based estimates.

mass estimator RMS%E 95% CI
merged 15-view visual hull volume 5.97% ( 4.90%, 8.18%)

5-view visual hull volumes 7.63% ( 6.80%, 9.41%)
mean of three 5-view visual hull volumes 6.54% ( 5.62%, 8.60%)

5-view geometric mean of area 10.99% ( 9.95%, 12.46%)
15-view geometric mean of area 10.11% ( 9.04%, 11.60%)
5-view arithmetic mean of area 12.23% (11.17%, 13.70%)

15-view arithmetic mean of area 11.00% ( 9.87%, 12.52%)

Table 6.5: RMS percentage errors (RMS%E) and 95% confidence intervals for gravel mass estimates.

Figure 6.15 shows plots of mass versus visual hull volume for the 5-view and 15-view visual hulls. The
plots show a linear relationship between mass and visual hull volume, with variability decreasing when
fifteen views are used instead of five. Note that the data points associated with the largest error are gross
overestimates of visual hull volume (due to unfavourable stone orientation), whereas gross underestimates
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Figure 6.15: Plots of gravel mass versus visual hull volume for 5-view visual hulls (left) and 15-view visual hulls (right).

of volume are not possible (in the absence of gross segmentation or calibration errors) since the visual hull
is always larger than the stone.

6.4.4 Caliper Diameter Estimation with Data from the Two-Mirror Setup

Vernier calipers were used to manually measure the longest, intermediate, and shortest diameter of 100 of
the stones from the gravel data set. Each stone was measured three times on three separate days, and the

median value was used as a ground truth value.

Figure 6.16 shows plots of the manually measured diameter values versus estimates based on 5-view sil-
houette sets using visual hulls and VEMHs. Silhouette-based estimates of the longest diameter agree more
closely with manually estimated values for the longest diameter than for the intermediate and shortest diam-
eter.

Table 6.6 shows error statistics for estimating caliper diameters using 5-view silhouette sets.

Visual hull VEMH
mean RMS RMS adjusted mean RMS RMS adjusted

shortest +8.04% 17.01% 14.05% +3.10% 10.78% 10.08%
intermediate +11.49% 15.59% 9.58% +9.85% 14.08% 9.28%

longest +1.01% 1.78% 1.45% +0.15% 0.93% 0.92%

Table 6.6: Percentage errors for diameter estimates based on 5-view silhouette sets formed from the gravel data set. The ‘RMS
adjusted’ value is computed after multiplying estimates by a constant to compensate for systematic error.

Coefficients of variation are shown for manual and silhouette-based caliper estimates in Table 6.7. The table
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./figures/merging/Plot5VH_GravelMirrorMergedCaliper6_.eps

(a)

./figures/merging/Plot5VEMH_GravelMirrorMergedCaliper6_.eps

(b)

Figure 6.16: Plot of manual caliper measurements versus estimates based on 5-view silhouette sets for the gravel data set using (a)
visual hull-based caliper estimates, and (b) VEMH-based estimates.

manual visual hull VEMH
shortest 6.53% 4.23% 2.83%

intermediate 5.68% 3.60% 2.34%
longest 1.34% 0.76% 0.42%

Table 6.7: Coefficients of variation of caliper diameters determined using different methods.

indicates that the manual measurements are the least repeatable. This means that inaccurate ground truth
may account for the high errors observed in Table 6.6. The coefficients of variation indicate that the VEMH-
based estimates are more repeatable than those based on visual hulls. For all three methods, estimates of the
longest diameter are the most repeatable, whereas estimates of the shortest diameter are the least repeatable.

Figure 6.17 and Table 6.8 present the results of applying caliper diameter estimation to the 15-view merged
silhouette sets formed from the original 5-view silhouette sets. The results indicate an improvement over the
5-view silhouette sets (see Figure 6.16 and Table 6.6).

Visual hull VEMH
mean RMS RMS adjusted mean RMS RMS adjusted

shortest +2.47% 11.37% 10.96% -0.08% 7.91% 7.97%
intermediate +9.86% 13.91% 9.02% +9.11% 13.75% 9.56%

longest +0.03% 0.75% 0.75% -0.14% 0.77% 0.76%

Table 6.8: Percentage errors for diameter estimates based on 15-view silhouette sets formed from the gravel data set. The ‘RMS
adjusted’ value is computed after multiplying estimates by a constant to compensate for systematic error.
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./figures/merging/Plot15VEMH_GravelMirrorMergedCaliper6_.eps

(b)

Figure 6.17: Plot of manual caliper measurements versus estimates based on merged 15-view silhouette sets for the gravel data set
using (a) visual hull-based caliper estimates, and (b) VEMH-based estimates.

6.4.5 Mass Estimation with Data from the Six-Camera Setup

Mass measurements were made for the data set of 1423 uncut gemstones (illustrated on pages 222–224)
using an electronic balance. Ten runs of 6-view silhouette sets were captured for each stone.

Mass estimates were carried out by multiplying the computed visual hull volume by a constant factor deter-
mined from the data (Equation 6.15).

Table 6.9 presents the results in terms of RMS percentage error for mass estimates computed using various
silhouette-based methods. The table shows that greater volume estimation accuracy is achieved using merged

visual hull volume, than by using the mean volume of the original 6-view visual hulls. However, both
approaches increase in accuracy as the number of runs (and hence the number of available views) is increased.
Results are also shown for visual hulls that are formed by aligning silhouette sets using the principal axes of
visual hulls or VEMHs rather than adjusting pose to minimise ET error. These approaches produce inferior
results to the ET minimised silhouette sets, and volume estimation error tends to increase as the number of
runs is increased. Results are also shown for area-based mass estimates. These are substantially less accurate
than visual hull-based estimates, and show only small improvements in accuracy as the number of available
views is increased. Again, mass estimates based on the product of areas (geometric mean) outperform those
based on the sum of areas (arithmetic mean).

Mass estimation was carried out on subsets of the 6-view silhouette sets to investigate performance using a
small number of views. The n-view subsets are formed by discarding all but the first n views from the six
available views. The results shown in Table 6.10 indicate that visual hull-based mass estimates outperform
area-based methods even when as few as two views are used. However, the first column of the table shows
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No.
merged

mean VH VEMH geometric arithmetic
Runs VH vol. aligned aligned area mean area mean

1
4.88% 9.21% 10.97%

(4.7, 5.3) (8.8, 9.8) (10.3, 11.8)

2
3.97% 4.67% 4.60% 4.61% 9.12% 10.92%

(3.8, 4.3) (4.5, 5.0) (4.4, 4.9) (4.4, 4.9) (8.7, 9.7) (10.3, 11.7)

3
3.63% 4.66% 4.66% 4.65% 9.08% 10.92%

(3.5, 3.9) (4.4, 5.0) (4.5, 5.0) (4.5, 5.0) (8.6, 9.6) (10.3, 11.7)

4
3.48% 4.60% 4.81% 4.77% 9.05% 10.92%

(3.3, 3.8) (4.4, 5.0) (4.6, 5.1) (4.6, 5.1) (8.6, 9.6) (10.2, 11.7)

5
3.35% 4.55% 4.95% 4.90% 9.05% 10.92%

(3.2, 3.6) (4.3, 4.9) (4.7, 5.2) (4.7, 5.2) (8.6, 9.6) (10.3, 11.8)

6
3.28% 4.52% 5.08% 5.03% 9.06% 10.92%

(3.1, 3.6) (4.3, 4.9) (4.9, 5.3) (4.8, 5.3) (8.6, 9.6) (10.3, 11.7)

7
3.23% 4.49% 5.21% 5.14% 9.04% 10.92%

(3.1, 3.5) (4.3, 4.9) (5.0, 5.4) (4.9, 5.4) (8.6, 9.6) (10.3, 11.7)

8
3.21% 4.49% 5.33% 5.26% 9.05% 10.92%

(3.0, 3.5) (4.3, 4.8) (5.1, 5.6) (5.1, 5.5) (8.6, 9.6) (10.3, 11.7)

9
3.20% 4.50% 5.45% 5.37% 9.06% 10.93%

(3.0, 3.5) (4.3, 4.8) (5.3, 5.7) (5.2, 5.6) (8.6, 9.6) (10.3, 11.7)

10
3.18% 4.50% 5.57% 5.48% 9.06% 10.93%

(3.0, 3.4) (4.3, 4.9) (5.4, 5.8) (5.3, 5.7) (8.6, 9.6) (10.2, 11.7)

Table 6.9: RMS percentage errors for mass estimates based on 1–10 runs of 6-view silhouette sets of the data set of 1423 uncut
gemstones: ‘merged’ is visual hulls formed from merging the available runs of silhouette sets with the proposed method; ‘mean VH
vol.’ uses the mean value of the 6-view visual hull volumes for the available runs; ‘VH aligned’ uses merged visual hull volume,
but without minimisation of ET error—visual hull principal axes and third order moments are used instead; ‘VEMH aligned’ uses
merged visual hull volume with VEMH principal axes and third order moments used for merging; ‘geometric’ and ‘arithmetic’ use
silhouette areas to estimate mass. Ninety-five percent confidence interval computed using a bootstrap approach are given in brackets.

cameras n-view merged geometric arithmetic
n VH 2n-view VH area mean area mean

2
13.80% 14.92% 15.99% 16.48%

(12.70%, 15.16%) (13.93%, 16.21%) (14.88%, 17.60%) (15.32%, 18.12%)

3
9.67% 6.35% 13.21% 13.85%

( 8.78%, 11.10%) ( 5.98%, 6.84%) (12.12%, 14.97%) (12.74%, 15.68%)

4
6.41% 4.75% 10.69% 11.95%

( 6.04%, 7.00%) ( 4.53%, 5.06%) (10.02%, 11.60%) (11.15%, 13.03%)

5
5.25% 4.16% 9.32% 10.86%

( 5.02%, 5.59%) ( 3.98%, 4.42%) ( 8.83%, 9.98%) (10.24%, 11.68%)

6
4.88% 3.98% 9.21% 10.97%

( 4.65%, 5.25%) ( 3.79%, 4.27%) ( 8.73%, 9.79%) (10.30%, 11.73%)

Table 6.10: RMS percentage errors for mass estimation of 1423 uncut gemstones using subsets of the original 6-view silhouette sets:
‘n-view VH’ uses the n-view visual hull volumes to estimate mass; ‘merged 2n-view VH’ uses visual hulls formed by merging two
runs of n-view silhouette sets; ‘geometric’ and ‘arithmetic’ use n silhouette areas to estimate mass. Ninety-five percent confidence
intervals are bracketed.
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a substantial increase in accuracy as the number of views is increased from two to six. Merging pairs of
2-view silhouette sets produces less accurate results than considering the 2-view silhouette sets individually.
This is because the 2-view silhouette sets do not provide sufficient constraints to produce accurate alignment.
However, merging using three or more views leads to more accurate mass estimates than using the original
silhouette sets before merging.

6.5 Summary

A method for merging more than one silhouette set of the same object into a single large silhouette set has

been presented. The method adjusts relative pose to minimise the ET error across silhouette sets. Start-
ing points for the minimisation are determined by using moments to align 3D approximations of the object
computed from each of the original silhouette sets. When moment-based starting points do not lead to a suf-
ficiently low ET error, starting points formed using a uniform random rotational component are considered.

Qualitative results computed using everyday objects such as toy animals demonstrate that better reconstruc-
tions can be obtained from a merged silhouette set than from any of the original silhouette sets used to form
the merged set.

Experiments carried out using synthetic data demonstrate that volume estimates based on the merged silhou-
ette sets are more accurate than those based on the original silhouette sets. Volume estimates computed using
silhouette sets merged by minimising ET error are close to as accurate as those computed using silhouettes
sets merged using the ground truth poses. Caliper diameter estimates are also more accurately estimated
from merged silhouette sets than from the original silhouette sets.

The method is applied to data sets of stones captured using both the two-mirror setup and the six-camera
setup. The accuracy with which mass and caliper diameters can be estimated is quantified. Mass estimates
based on visual hull volume are demonstrated to be more accurate than those based on silhouette area.
Results are compared with estimates based on merged silhouette sets. The merged silhouette sets show
an improved accuracy for mass estimates and caliper diameter estimates. The accuracy associated with
the caliper diameter estimates is likely underestimated, because of the difficultly in accurately manually
measuring the ground truth values with a Vernier caliper. The silhouette-based methods are found to be more
repeatable over multiple runs than the manual measurements.
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Chapter 7

Matching Pairs of Silhouette Sets

7.1 Introduction

This chapter moves on to the next major topic: recognising individual stones from their silhouettes. The
key idea is to apply the ET-based pose optimisation described in Chapter 6 to pairs of silhouette sets. If the

residual ET error after pose alignment is sufficiently low, then the pair of silhouette sets is classified as a
match (i.e., produced by the same stone); otherwise, the pair of silhouette sets is classified as a mismatch
(i.e., the two silhouette sets were produced by two different stones).

Recall that the ultimate goal for the recognition component of this thesis, as stated in Chapter 1, is batch

matching. Batch matching is matching two batches of silhouette sets from two unordered runs of the same
batch of stones. This chapter investigates the simpler problem of verification, i.e., verifying that a pair of
silhouette sets was produced by the same stone (a match). The methods developed for verification will be
extended in later chapters for the purposes of batch matching.

The proposed alignment-based method achieves its accuracy by approaching the matching problem from the
point of view of silhouette consistency, rather than considering the similarity between 3D approximations
of the stones computed from each silhouette set. A weakness of using 3D approximations is that the shape
of the 3D approximations will vary with stone orientation even in the noise-free case. Chapter 8 considers

a matching method that is based on 3D approximations to stone shape. Although less accurate than the
method describe in this chapter, it is substantially faster to compute. Chapter 9 will demonstrate how the two
methods can be combined to achieve both speed and accuracy for solving the batch matching problem.

Alignment-based matching simply requires applying the ET-based pose optimisation described in Chapter 6.
This chapter investigates two modifications to the method: (1) the use of an orthographic projection model,
and (2) the use of a measure of inconsistency based on the cone intersection projection (CIP) constraint.
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The use of an orthographic projection model is aimed at improving efficiency. The use of a measure of
inconsistency based on the CIP constraint is aimed at improving accuracy.

Experiments are carried out on image sets of stones captured using the six-camera setup and the two-mirror
setup. The experiments demonstrate how the residual ET error across pairs of silhouette sets separate match
cases from mismatch cases. The improvement in running time efficiency is quantified for the use of an
orthographic projection model. The effect of using CIP-based measures of inconsistency is investigated using
downsampled real data and synthetic data for different camera configurations. (Downsampling is required
to create overlap between the match and mismatch distributions.) Synthetic data are used to investigate
the behaviour of ET-based matching on different camera configurations and at different levels of image
resolution.

7.2 Related Work

There is a wealth of literature on recognising silhouettes from a fixed viewpoint, a 2D recognition problem.
Since this thesis considers stones that are arbitrarily oriented with respect to the cameras, these approaches
are not relevant. The computer vision literature describes several approaches to silhouette-based matching
from variable viewpoints. The principal difference between the problems addressed by these methods and
the problem addressed in this work is that single silhouettes are used for matching, whereas here silhouette
sets are used. Several approaches are outlined below and their relevance to this work is explained.

Jacobs et al. [65] consider the problem of recognising an object from a single silhouette. Their method is
related to the approach described in this chapter in that recognition is attempted without 3D reconstruction,

only a small number of views is used, and silhouette consistency is used to determine matches. However,
the authors limit themselves to the case in which the camera translates and rotates about a known axis that
is parallel to the image. Outer tangents are used to determine consistency using an approach based on linear
programming.

Lazebnik et al. [77] describe a method for recognising objects from single silhouettes by storing multiple
silhouettes of objects in a database. A geometrical approach is taken, where a match is considered to cor-
respond to consistent epipolar geometry. The method achieves its discriminatory power by considering all
epipolar tangents rather than only the outer epipolar tangents. For epipolar tangents to aid discrimination,
the tangencies must be visible across different viewpoints. Since most stone silhouettes do not have epipolar
tangents (other than the outer epipolar tangents) that are visible across multiple viewpoints, such an approach
is not feasible.
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7.3 An Orthographic Model for Computing ET Error

In this section, a method for computing ET error using an orthographic imaging model is described. An
orthographic model offers several advantages over the perspective model:

1. An analytical expression can be computed for the Jacobian matrix that is used by the Levenberg-
Marquardt routine for pose optimisation. This has the potential to speed up the computation. Without

an analytical expression, the Jacobian is estimated using a forward difference method [58]. This
method requires one extra evaluation of the cost function for each dimension of the pose parameter
vector. Since seven parameters are used to describe the pose (a quaternion and a 3D translation vector),
each evaluation of the Jacobian requires seven extra evaluations of the cost function. If the analytical
expression can be computed faster than this, then the matching process can be completed in less time.

2. In the perspective case, it is possible that an epipole may lie within a silhouette. If this occurs, there
will be no outer epipolar tangencies. The use of a perspective model requires the additional overhead of
identifying these cases, and introduces the additional complexity of differing numbers of reprojection
errors corresponding to different poses. In the orthographic case the epipoles are always at infinity,
and thus correspond to directions [58]. Each silhouette image of a stone will always yield two outer
epipolar tangencies with respect to the epipole.

3. Tangencies can be computed more efficiently using an orthographic imaging model. This is described
in Section 3.5.4. The gain in efficiency is because directions of epipolar tangencies correspond ex-
actly to the direction of the epipole for an orthographic imaging model. Tangencies can therefore be
unambiguously determined using the edge-angle data structure. Unlike the perspective case, no check
is required to confirm that the vertex is a tangency.

4. Unlike in the case of a perspective model, for an orthographic model residual errors (i.e., distances
from tangencies to projected epipolar tangents) computed in one image of a pair are identical to resid-
ual errors computed in the other image of the pair. This means that residual errors need only be
computed in one image for each pair.

The orthographic model is computed separately for each silhouette view and is based on the perspective
model for each of the cameras, which is determined with the once-off camera calibration procedure. The
orthographic model is thus a very close approximation to the full perspective model in the vicinity of the

stone.

The original polygonal boundary is used to create an approximation to the orthographic projection that
would be observed from an orthographic camera that shares a viewing direction with the perspective cam-
era. Whereas the original polygonal boundary is specified in pixel units, the orthographic approximation
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is specified in world units (millimetres). To approximate an orthographic vertex (px, py)T from the image
coordinates (u,v)T of a vertex of the original polygonal boundary, the following equation is used:

(
px

py

)
=

[(
u

v

)
−

(
u0

v0

)]
zcen

f
, (7.1)

where zcen is the depth of the centroid of the VEMH. The assumption that is implicit in Equation 7.1 is that
the depth of the VEMH centroid closely approximates the depth of the rim points.

Consider computing the ET error across two silhouette sets: Set A and Set B. This requires reprojection
errors to be computed across each silhouette from Set A paired with each silhouette from Set B (as described
in Section 3.5.2).

Reprojection errors are computed for each pair of silhouette views. The relative pose of two views (one from
Set A and one from Set B) is described by a rotation R followed by a translation t that transform points in
the reference frame of View 2 into the reference frame of View 1:

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 , (7.2) t =




tx
ty
tz


 . (7.3)

The last rows of R and t are not needed, since orthographic projections are used and any point may thus slide
arbitrarily along the Z-axis of either camera. However, in practice R and t are computed as in Equations 7.2
and 7.3 since they are computed directly from 4×4 rigid body transform matrices that are used to describe
silhouette poses in different reference frames. The 4×4 rigid transform matrix MC2→C1 that transforms from
Camera 2’s reference frame to Camera 1’s reference frame is computed as follows:

MC2→C1 =

(
R t
0T 1

)
= (MWA→C1)(MWB→WA)(MC2→WB). (7.4)

The two silhouette sets are Set A and Set B. Camera 1 is from Set A and Camera 2 is from Set B. The matrix
MWA→C1 describes the rigid transform from Set A’s world reference frame to Camera 1’s reference frame.
The matrix MWB→WA describes the rigid transform that attempts to align Set B’s world reference frame with
Set A’s world reference frame. The matrix MC2→WB describes the rigid body transform from Camera 2’s
reference frame to Set B’s world reference frame (usually computed as M−1

WB→C2). The matrices MWA→C1

and MWB→C2 are computed using a once-off camera calibration procedure; the candidate pose is represented

by the matrix MWB→WA. To compute R and t for a pair of silhouettes and a candidate pose, a 4× 4 matrix
representation of the candidate pose must be formed, and then Equation 7.4 is used. Note that the candidate
pose describes the pose between Set A and Set B, so the pose between specific views within Sets A and B
must be derived from both the candidate pose and the relative poses within a set.

132



The reprojection error is the distance from an outer epipolar tangency to the epipolar line corresponding to
the tangency in the opposite view. In the noise-free case the distance will be zero, since the tangencies are
two views of the same 3D point (a frontier point). In order to determine the tangencies, it is first necessary
to determine the epipolar directions. The tangencies can then be located, and the reprojection errors can be
computed.

The epipolar direction e12 is the projection of the viewing direction of View 2 onto the image plane of View 1.
This is illustrated in the example shown in Figure 7.1a.

./figures/merging/OrthoScene3D.eps

(a)

./figures/merging/OrthoScene2D.eps

(b)

./figures/merging/OrthoScene2DCloseup.eps

(c)

Figure 7.1: The epipolar geometry relating two orthographic views of a stone: (a) shows the two silhouette views, (b) shows the
image plane of the first view, and (c) shows a closeup of (b) in the vicinity of the outer tangency under consideration.

The viewing direction d of a camera in its own reference frame is

d =




0
0
1


 , (7.5)
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since by convention the camera is modelled to point along the z-axis. In the reference frame of Camera 1,
the viewing direction of Camera 2 is

d12 = Rd =




r13

r23

r33


 . (7.6)

Since d12 is a direction, it is unaffected by t. The epipolar direction e12 is obtained by dropping the z-
coordinate of d12 to project the vector onto the image plane of Camera 1:

e12 =

(
r13

r23

)
. (7.7)

Once the epipolar direction has been computed, the tangency vertices are located using the edge-angle data
structure as described in Section 3.5.4.

The reprojection errors are computed as the distance from an epipolar tangency to the epipolar line corre-
sponding to the opposite epipolar tangency.

To compute the epipolar line that the projection of p2 is constrained to lie on (given the relative pose between
Views 1 and 2), a point on the line is considered. For simplicity, the z-coordinate of p2 in the reference frame
of Camera 2 is set to zero so that

p2 =




p2x

p2y

0


 . (7.8)

The projection p12 is then given by

p12 =

(
r11 p2x + r12 p2y + tx
r21 p2x + r22 p2y + ty

)
. (7.9)

The epipolar line p12 +ve12 meets the line that passes through the epipolar tangency p1 and is perpendicular
to the epipolar direction at

r = p12 + v0e12 = p1 +u0

(
− r23

+ r13

)
. (7.10)

(See Figure 7.1.) Solving for u0 gives

u0 =
r23(p1x− r11 p2x− r12 p2y− tx)− r13(p1y− r21 p2x− r22 p2y− ty)

r2
23 + r2

13
. (7.11)

Reprojection errors ∆x and ∆y are then given by

(
∆x

∆y

)
= u0

(
− r23

+ r13

)
. (7.12)
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The above equations provide an efficient means for computing the ET error in the case of an orthographic
imaging model. The residual values should only be computed in one image plane of the pair. This is because
the distance values in both images are equal to the distance between two specifications of the epipolar tangent
plane: one specified by the camera centres and the epipolar tangency in View 1, and the other specified by
the camera centres and the epipolar tangency in View 2.

An important advantage of the equations laid out above is that an analytical expression can be derived for
the Jacobian matrix that is used by the Levenberg-Marquardt method that is used for pose optimisation. The
derivation of this Jacobian matrix is described in Appendix B.

7.4 Error Formulations Based on the CIP Constraint

The ET constraint is a weaker constraint than the CIP constraint (as described in Section 3.5). The ET
constraint specifies a necessary, but insufficient condition for consistency. An error or degree of inconsistency
derived using the ET constraint has been chosen for pose optimisation, since it is efficient to evaluate. This is
important since pose estimation is an iterative procedure that requires the error to be evaluated for different
parameters over many iterations.

Under noisy conditions, a mismatch pair of silhouette sets may have an ET error that is sufficiently low that
the pair is misclassified as a match. However, since the CIP constraint is stronger than the ET constraint (it
specifies both a sufficient and a necessary condition for consistency), a measure of inconsistency based on
the CIP constraint may not result in a misclassification. This approach makes use of the ET error for pose
optimisation, but uses a once-off evaluation of a CIP-based error for match verification.

This section presents three measures of inconsistency that are based on the CIP constraint: Boyer error,
convex CIP error, and nonconvex CIP error. Boyer error is based on Boyer’s silhouette calibration ratio [14,
15], whereas convex CIP error and nonconvex CIP error are novel formulations. The three measures of
inconsistency will be compared with ET error in terms of match verification accuracy.

7.4.1 Boyer Error

Boyer’s method [14, 15] considers the rays corresponding to each silhouette point in the silhouette regions
that are not covered by the CIP. The error associated with each ray is determined by computing the 3D point
on the ray that is consistent with the largest number of the silhouettes in the set. The error contributed by
this ray is proportional to the number of silhouettes that are inconsistent with the 3D point (i.e., silhouette
viewpoints in which the 3D point does not project into the silhouette).

135



Since there is a continuum of rays corresponding to any finite image region, silhouettes are pixelated in order
to compute the Boyer error. The ray passing through the pixel centre is considered for each pixel. Higher
resolution pixelations will therefore lead to more accurate approximations of the Boyer error.

The ray corresponding to each foreground pixel in each silhouette view is considered in turn. Each of the
remaining silhouettes defines a (possibly empty) interval on the ray for which the silhouette is consistent
with the ray. This interval is computed by projecting the ray onto the silhouette. The projected ray-silhouette
intersection is a line segment. This line segment is projected back onto the 3D ray to obtain the interval.
A 3D point on the ray that lies within the maximum possible number of intervals is considered next. If the
maximum number of intervals is equal to the number of silhouettes, then the pixel is covered by the CIP, and
does not contribute to the error since it is consistent with all silhouettes. Otherwise, the pixel contributes an
error of ka/(A(m−1)), where k is the number of the m−1 remaining silhouettes that are consistent, a is the

pixel area, and A is the total area of foreground regions in the silhouette set.

Boyer’s method differs from the other methods (such as the approach of Hernández [39], and the formu-
lations that are presented in Sections 7.4.2 and 7.4.3) in that the viewing ray corresponding to each point
within a silhouette is not simply classified as consistent or inconsistent. Rather, a degree of inconsistency is
obtained for each viewing ray. This is done by using the number of consistent silhouettes for each viewing
ray. Another approach would be to take into account some measure of distance from consistency for each
silhouette-ray pair. This was not implemented because it is inefficient to compute, making it impractical to
apply to a large number of silhouette sets.

7.4.2 Convex CIP Error

The convex CIP error is an attempt to create an error formulation that is fast to compute by limiting the
input to convex silhouettes. The approach achieves efficiency by providing a closed form solution that is
computed directly from the input polygons (as opposed to the other methods which require rasterisation).
This comes at the cost of discarding information in the concave regions of the original polygonal boundaries.
This information may potentially aid discrimination between matches and mismatches.

The convex hulls of the silhouette boundaries are used as input. This approach works because the silhouettes

of the 3D convex hull of a stone are the 2D convex hulls of the silhouettes of the stone: if a silhouette set
is consistent, then a silhouette set formed from the 2D convex hulls of the silhouettes in this set will be
consistent too.

The convex CIP error method integrates the distance (possibly raised to some power of n) from the silhouette
boundary to the CIP over the silhouette boundary for all silhouettes in the set. Silhouette regions that are not
overlapped by the CIP can contribute error according to how far they are removed from the CIP (by squaring
or cubing the distance for instance). This is a potential advantage over the Boyer error, since uncovered
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regions that are far from the boundary are more likely to be caused by a mismatch than by segmentation or
calibration error.

Using convex silhouettes provides several advantages:

1. The cone intersection can be efficiently computed.

2. The boundaries of the CIP can be easily and efficiently computed.

3. A boundary-based error formulation can be used, since convex boundaries cannot have fractal-like
perimeters that make nonconvex boundaries highly sensitive to resolution.

The cone intersection of convex cones can be efficiently computed as a halfspace intersection. Each cone face
represents a halfspace (the halfspace on the cone side of the plane passing through the face). The halfspace
intersection is computed using a dual space formulation which allows a convex hull algorithm to be used.
Efficient convex hull algorithms exist (O(m logm) for m cone faces).

The boundaries of the CIPs can now be obtained by computing the 2D convex hulls of the projected vertices
of the cone intersection. Note that computing the boundary of a projection of a nonconvex polyhedron is a
far more elaborate procedure.

To integrate the distance (raised to the nth power) to the CIP around the silhouette boundary, the boundary
is traversed to identify triangular and trapezial∗ regions (see Figure 7.2). The triangles consist of portions of

./figures/matching/SilCip.eps

(a)

./figures/matching/BlueYellowTriTrap.eps

(b)

./figures/matching/BlueYellowTriTrapTopRight.eps

(c)

Figure 7.2: Computing convex CIP error: (a) the silhouette boundary (solid line) and CIP boundary (dashed line), (b) the triangles
and trapezia that must be considered when computing the error (with alternating shading to aid visualisation), and (c) a closeup of
the top right of (b).

the silhouette boundary whose closest point is the same point on the CIP. The trapezia are made up of the
remaining portions of the boundary. The trapezia and triangles are computed by determining whether the
closest point on the CIP polygon is along an edge (for trapezia) or at a vertex (for triangles).

∗Confusingly, what is referred to as a trapezium in British English is a trapezoid in American English, and vice versa. Here,
British English is used: a trapezium is a quadrilateral with a pair of parallel sides.
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The error component Etri contributed by each of the triangles is computed from the three side lengths s, t,
and u (as illustrated in Figure 7.3) as follows (the side of length u lies on the silhouette boundary polygon):

Etri =
0∫

−w

(x2 + f 2)n/2dx+
v∫

0

(x2 + f 2)n/2dx, (7.13)

where

θ = acos((t2− s2−u2)/(−2su)) (7.14)

f = s sinθ (7.15)

v = s cosθ (7.16)

w = u− v. (7.17)

./figures/matching/triangle.eps

Figure 7.3: Diagram for computing the error contribution of triangles.

Equation 7.13 was successfully evaluated for values of n = 1,2,3, and 4 using the Matlab Symbolic Toolbox.
In this work, the exponent of n = 2 was used. The solution to the integral for n = 2 is

Etri =
1

(18ut2 +18us2−6u3)
. (7.18)

Similarly, the error component Etrap contributed by each of the trapezia is computed from the four side
lengths p, q, r, and m (as illustrated in Figure 7.4) as follows (the side of length m lies on the silhouette
boundary polygon):

Etrap =
m∫

0

[ x
m

p+
(

1− x
m

)
r
]n

dx = m(pn+1− rn+1)/((p− r)(n+1)). (7.19)
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./figures/matching/trapezium2.eps

Figure 7.4: Diagram for computing the error contribution of trapezia.

7.4.3 Nonconvex CIP Error

Nonconvex CIP error works with the silhouettes directly rather than their convex hulls. This means that
saddle-shaped regions on a stone that are imaged as concave portions of the silhouette boundary can poten-
tially be used to discriminate between matches and mismatches. For instance, if two stones have very similar
convex hulls, yet differ in shape because of saddle-shaped regions, the nonconvex CIP error may be able to
correctly classify a mismatch that would be misclassified if the convex CIP error were used. The nonconvex
CIP error is therefore only likely to show a substantial improvement over convex CIP error for matching
applications in which the stones have substantial variation in the shapes of saddle-shaped regions of their
surfaces.

Unlike the convex CIP error, area-based integrals are used, since a nonconvex boundary can be highly sensi-
tive to resolution. The integral of the distance to the CIP (raised to the nth power for some n) from all points
inside the silhouette, but outside the CIP, forms the nonconvex CIP error.

A visual hull algorithm is used to compute the cone intersection†. Although Matusik et al. [91] describe
an efficient algorithm, it is not used here because it produces a so-called polygon soup output that does not
provide connectivity information for the faces. This makes computing an exact projection of the cone inter-
section impossible, and creating an approximate quantised projection of the cone intersection by rendering
is slow. Instead, a marching tetrahedron-based approximation to the visual hull was created using a C++ im-
plementation‡ of Bloomenthal’s implicit surface polygonizer [8]. The routine outputs the visual hull surface
as a triangular mesh. An alternative algorithm is the exact method described by Franco and Boyer [48].

The CIP outline is computed exactly from the triangular mesh representation. To do this, it is necessary
to identify the contour generator edges on the triangular mesh with respect to the viewpoint. Only edges
formed by a pair of faces in which exactly one face is towards the viewpoint are candidates. The bottommost
vertex of the projected edges is guaranteed to lie on the outline, and may be used as a starting point. From the
starting point, the algorithm moves from vertex to vertex. Care must be taken in selecting the correct edge, as
multiple candidate edges may share a common vertex. Edge projections may also be crossed by edges from

†In the case of a match, the cone intersection is the visual hull of the object and associated viewpoints. However, to avoid abuse
of terminology, the term cone intersection is preferred since in the case of a mismatch set the visual hull is not a meaningful concept.

‡The polygonizer library was provided by J. Andreas Bærentzen (Technical University Denmark).
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a different part of the triangular mesh. These crossings cause a discontinuity in the contour generator (but
not in its projection), and introduce new vertices. Each other candidate edge must therefore be checked when
traversing each edge. This makes the algorithm of O(m2) complexity for m candidate edges. The algorithm
terminates upon returning to the starting point. An example is shown in Figure 7.5.

./figures/matching/MeshHorseC.eps

(a)

./figures/matching/HorseOutline.eps

(b)

Figure 7.5: Example showing (a) a triangular mesh, and (b) the outline of a projection of a triangular mesh computed using the
algorithm described above.

For each silhouette, the CIP and the silhouette are rendered to create rasterised versions. A distance transform
is used to assign values to pixels in the silhouette according to their distance from the silhouette outline.
Pixels not covered by the CIP contribute error of the distance value. Error values are summed for all pixels
over all silhouettes. The approach of computing the exact projection of a triangular mesh described above
allows the error to be computed reasonably efficiently. Note that by counting the number of pixels that are
not covered by the CIP, one obtains an estimate of the area of non-overlap. This measure was considered by
Hernández et al. [60], who created a perimeter-based method to approximate the area of non-overlap.

7.5 Experiments

7.5.1 Empirical Match and Mismatch Distributions

Pose optimisation was applied to match and mismatch pairs of silhouette sets formed from the data set of five
runs of 246 garnet stones captured with the six-camera setup. The five silhouette sets of each stone (from the
five runs) can be paired in 5!/(2!(5−2)!) = 10 different ways. This means that there are 10×246 = 2460

match pairs. The 5× 246 = 1230 silhouette sets can be paired in 1230!/(2!(1230− 2)!) = 755 835 ways
of which 755 835− 1230 = 754605 are mismatch pairs. However, only mismatches across different runs
were considered, as this still provides a large number of mismatch pairs, whilst simplifying the selection of
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the pairs. This means that 10× (246× 246− 246) = 602 700 mismatch pairs were considered. Note that
although there is a large number of mismatch cases, they are not statistically independent samples. This is
because the same stone is used in multiple pairs. Such dependence is common in the evaluation of biometrics
recognition systems such as fingerprint verification. Bolle et al. [10] have developed the subsets bootstrap
to account for this dependence when estimating uncertainty associated with accuracy performance statistics
derived from such data.

Pose optimisation based on the orthographic projection model was used, as the garnets are small with respect
to the distances to the camera. One hundred starting points were used for each silhouette set pair. The first
four starting points were based on alignment of the principal axes of the two VEMHs, and the remaining
orientation components were uniform random rotations. The experiment required several days of running
time on a 3.2 GHz Pentium 4 machine.

Figure 7.6 shows the distributions of ET error values across silhouette sets after pose optimisation for matches
and mismatches. It is important to notice that the match and mismatch distributions do not overlap: the
smallest mismatch ET error is 2.26 pixels, whereas the largest match ET error is 0.72 pixels. This means
that there is a range of ET error thresholds (0.72–2.26 pixels) that will separate, without misclassifications,
match pairs from mismatch pairs for the pairs considered in this data set.

Figure 7.7 illustrates the pairs corresponding to the highest match error (i.e., the match that comes closest
to being misclassified as a mismatch), and the lowest mismatch error (i.e., the mismatch that comes closest
to being misclassified as a match). As can be seen in the figure, the mismatch pair exhibits a higher degree
of inconsistency than the match pair both in terms of ET error distances shown in red, and in terms of the
degree of non-coverage of the silhouettes by the CIPs.

The non-overlap between the match and mismatch distributions, is beneficial to the accuracy of matching
based on pose optimisation. However, it makes estimating the long run error rate and comparison between
different methods difficult. In Section 7.5.4, ET error is compared with CIP-based error formulations by us-
ing reduced resolution images with smaller numbers of views. Reducing the resolution and number of views
creates overlap between the match and mismatch distributions, which facilitates comparison of different
methods.

The experiment was repeated with the gravel data set captured using the mirror setup. Three runs of five-
view silhouette sets of the 220 gravel stones were used. From this data, 3× 220 = 660 match pairs and
(220× 220− 220)× 3 = 144 540 mismatch pairs were formed. Unlike in the case of the garnet data, pose
optimisation was applied using the perspective model. This was because some initial experimentation in-
dicated that the camera was sufficiently close to the stones for the orthographic model to be inappropriate.
The experiment required more than a week’s processing time. The results of the experiment are shown in
Figure 7.8. Again, there is a range of ET threshold values that completely separate the match pairs from the
mismatch pairs from this data. In the case of the gravel data, the largest ET error across silhouette sets for a

match pair is 0.68 pixels, whereas the smallest ET error from a mismatch pair is 3.15 pixels.
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./figures/matching/PlotKingMatchMismatchDistAfar.eps

(a)
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(c)

Figure 7.6: ET errors across silhouette set pairs after pose optimisation for 2460 match pairs and 602 700 mismatch pairs formed
from the six-view garnet data set: (a) shows match and mismatch distributions estimated with a kernel smoothing method (a low
variance Gaussian was used to limit over-smoothing); (b) shows a closeup of (a) in the region where the distributions are closest; (c)
shows the data points in the region illustrated by (b) (the vertical component, which is random, is a visualisation aid).
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Figure 7.7: Pair of garnet silhouette sets corresponding to the highest ET error of a match (top half), and the lowest ET error of
a mismatch (bottom half). For each pair, the top row shows projected epipolar tangents within the silhouette set in green, across
silhouette sets in blue, and error distances in red; the bottom row shows silhouettes in colour with 12-view CIPs in grey.
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./figures/matching/GravelEtPlotDist.eps./figures/matching/GravelEtPlotPoints.eps

Figure 7.8: ET errors across silhouette set pairs after pose optimisation for 660 match pairs and 144 540 mismatch pairs formed
from the five-view gravel data set captured using the mirror setup: (a) shows the region where the distributions are closest; (b) shows
the data points in the region illustrated by (a) (the vertical component, which is random, is a visualisation aid).

./figures/matching/Matrix1Exp0.5.eps./figures/matching/Matrix2Exp0.5.eps./figures/matching/Matrix3Exp0.5.eps

Figure 7.9: Match matrices formed from the gravel data set. Each element corresponds to a silhouette set pair from two runs.
Diagonal elements are match pairs and off-diagonal elements are mismatch pairs. The three matrices correspond to the three run
pair combinations. Darker regions indicate lower ET error.

Figure 7.9 illustrates the three 220×220 match matrices formed from the gravel data set.

7.5.2 Recognising Stones by Mass

The results observed in the above-mentioned experiments indicate that ET error after pose optimisation
provides a potentially accurate way to recognise individual stones. It is interesting to consider another
method that one might use to identify or recognise individual stones on different occasions: the stone’s mass
as measured by an electronic balance.

Figure 7.10 shows ROC (receiver operating characteristic) curves computed using mass difference as mea-
sured by an electronic balance as a measure of dissimilarity. Results are shown for the data set of gravel
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./figures/matching/RocGravelDiamondMass.eps

Figure 7.10: ROC curves computed for dissimilarity defined as the difference in mass as measured by an electronic balance. The
ROC curves have nonlinear axes to aid visualisation: this is the detection error tradeoff curve format introduced by Martin et al. [89].

and gemstones. Each stone was weighed with an electronic balance. Each gravel stone was weighed on
three different days (three runs of mass measurements). Two runs of mass measurements were captured for
the gemstone data. This was carried out by staff of the company that provided the gemstones. The ROC
curves show the estimated error rates that one would obtain from matching the stones based on a threshold
on the difference between mass values measured on two different occasions. The ROC curves are computed
by determining all the measured mass differences for matches and for mismatches across runs. The ROC
curves indicate that using measured masses cannot be used to provide error-free classification. This is be-
cause the variability of measured masses is sufficiently high to create differences in measured mass of the
same stone that are in some cases higher than the mass differences between different stones. In the case of
the gravel stones, the data indicate that the equal error rate is approximately 0.5%, whereas the equal error
rate is approximately 3% for the gemstone data. The gemstone data produce larger errors partially because
the mass variability is not as large as for the gravel data: there are many cases where pairs of gemstones have
approximately the same mass, and are therefore prone to being misclassified as matches (a false acceptance).

The ROC curve for the gemstone data indicates that to attain a low false rejection rate (say < 0.1%), one
must tolerate a very high false acceptance rate (> 30%). This is because the mass measurements contain
several gross errors (the measurements were possibly incorrectly transcribed by the data capturer). A few
large measured mass differences for match pairs result in the necessity of a high tolerance for measured mass
differences if one is to ensure that the false reject rate remains low. This will result in a high false acceptance
rate as many mismatch pairs will be misclassified as matches. The principal reason for presenting the ROC
curves in Figure 7.10 is to demonstrate that identifying stones by individual mass is infeasible for the data
sets considered in this thesis.
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7.5.3 Running Time Experiments

Section 7.3 presented an algorithm for computing ET error based on an orthographic projection model. This
approach was designed to speed up the computation of the ET error. The results presented here quantify the
speedup that one obtains using the orthographic model instead of the perspective model.

Table 7.1 shows the mean running time for optimisation from a single starting point for different optimisation

types. Results were computed using 246 pairs of six-view silhouette sets of garnets.

imaging tangency Jacobian mean
model location computation time

orthographic lookup analytical 4.6 ms
orthographic scan analytical 11.6 ms
orthographic lookup forward difference 8.6 ms
orthographic scan forward difference 28.6 ms
perspective lookup forward difference 73.6 ms
perspective scan forward difference 144.6 ms

Table 7.1: Mean running time per optimisation for various methods: ‘lookup’ means the edge-angle lookup was used and ‘scan’
means that each vertex of the polygon was visited to determine tangencies. Times are computed using 6-view silhouette sets of
garnets with a stopping criterion requiring an error reduction of no more than 1% reduction of the RMS residual ET error over three
Levenberg-Marquardt steps. A 3.2 GHz Pentium 4 machine was used.

The results demonstrate the speedup that is achieved in practice when using the proposed modifications to
compute ET error. A speedup of a factor of 30 is achieved over the basic perspective model without tangency
lookup. Tangency lookup increases the speed of the perspective-based method by a factor of two. A further
speedup of a factor of approximately eight is achieved by switching to an orthographic model. The use of an
analytical expression for the Jacobian matrix provides a further speedup of more than a factor of two.

7.5.4 Performance of CIP-Based Error Formulations

Silhouette inconsistency formulations based on the CIP constraint were presented in Section 7.4. To compare
the performance of the CIP-based formulations with ET error, the garnet images were downsampled to reduce
the silhouette boundary accuracy, and in so doing to create an overlap between the match and mismatch

distributions for ET error. Each pixel in 32×32 blocks of pixels was replaced with the mean intensity value
of the 32×32 block. This mimics what would be obtained using a camera with lower resolution. Figure 7.11
shows an example of a downsampled silhouette set.

Pose optimisation as described in Section 7.5.1 was applied to matches and mismatches formed from the
first two runs of the downsampled garnet data. (Only two runs were used because of the long running time
required for these experiments.) The experiment was repeated using different subsets of camera views to
investigate the effects of varying the number of cameras.
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Figure 7.11: An example of a six-view image set of a garnet after 32× 32 downsampling. Extracted polygonal boundaries are
shown in colour.

Where parameter values needed to be chosen (e.g., silhouette rasterisation resolution for Boyer error, and
voxelisation resolution for nonconvex CIP error), the values were chosen so that any attempt to further

increase the accuracy would result in negligible improvements. The approach to parameter value selection
therefore sacrifices speed in favour of matching accuracy.

Figure 7.12 shows ROC curves computed after ET-based pose optimisation using different CIP-based for-
mulations and ET error. Boyer error was not computed in these experiments because of its prohibitively high
running time. The plots show ROC curves based on an additional measure of dissimilarity: earth mover’s
distance (EMD) between caliper distributions of the VEMH. This method will be described in the next chap-
ter. Unweighted nonconvex CIP refers to nonconvex CIP error computed without the distance transform: the
silhouette area not covered by the CIP is used without weighting uncovered regions according to the distance
from the boundary.

The plots show that greater accuracy is achieved as the number of cameras is increased, because this increases
the number of consistency constraints imposed by the silhouettes within a set. Despite incorporating more
information than ET error, Figure 7.12 indicates that in most cases the CIP-based error formulations produce

worse ROC curves than the ET error. The plots suggest that the CIP-based methods only outperform ET
error (in terms of accuracy) for certain operating points of the ROC curve for the 3-camera case.

The poor performance of the CIP-based methods (particularly for more than three cameras) may be a conse-
quence of the following:

147



./figures/matching/RocRealKing-Cams2Res32Stones243.eps

(a) 2 cameras

./figures/matching/RocRealKing-Cams3Res32Stones243.eps
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(e) 6 cameras

Figure 7.12: ROC curves computed using two runs of downsampled images from the garnet data set. Results are shown for different
subsets of the six camera views. (See text for further details.)
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1. As the number of well-distributed views is increased, the constraints imposed by the epipolar tangents
become closer to the constraints imposed by the CIPs. This was pointed out by Hernández [39].
The potential advantage of using a CIP-based measure of inconsistency is therefore diminished as the
number of views considered is increased.

2. CIP-based errors require the cone intersection to be computed. The cone intersection is sensitive
to noise, since if any silhouette indicates that a 3D region of space is empty it is considered to be
empty. This noise sensitivity is analogous to using a maximum rather than a mean of some feature

to characterise a class of objects. For instance, one might expect the maximum caliper diameter of a
silhouette to be more noise sensitive than the mean caliper diameter.

3. Stones tend not to have deep concavities that are visible from widely disparate views. This limits the
potential of nonconvex CIP error to incorporate information that cannot be captured by ET error (or
convex CIP error).

Figure 7.12b suggests that CIP-based error can provide superior performance to ET error in at least some
situations. Figure 7.13 uses bootstrap replications to illustrate that the observed differences between the
ROC curves are not likely to be due to chance alone. When considering the statistical variability of a curve
estimated from samples, Efron [35] recommends using bootstrap samples (i.e., repeatedly drawing n samples
from the original n samples with replacement) for a “quick and dependable picture of the statistical variability
in the original curve.” The idea is that the variability of the bootstrap curves approximates the variability that
one would obtain if one carried out the same experiment (with different random samples) many times. Since
error values are not independent, the ‘subsets bootstrap’ method of Bolle et al. [10] was used. The method
groups error values in an attempt to reduce dependence as much as possible. The plot indicates that the
observed superior performance of the CIP-based methods in the upper region persists over twenty bootstrap
replications.

The superior performance of CIP-based methods for certain operating points in the three-view case is clearly
of little practical significance, and thus far the CIP-based methods appear to be of little use.

In a further attempt to investigate whether CIP-based methods might outperform ET error in certain situa-
tions, synthetic data sets were used. The first set was created from refined visual hull models of 100 uncut
gemstones that were selected for their degree of nonconvexity. The stones are scaled along their three princi-
pal axes so that each stone has unit convex volume and its caliper diameter along the three principal directions
are in the ratio 2 : 3 : 4. Giving the stones the same gross shape ensures that false acceptance errors occur.
The synthetic nonconvex stones are illustrated in Appendix C on page 225. Nonconvex stones were created
as these have the potential to demonstrate the superiority of nonconvex CIP error over convex CIP error.

A further set of synthetic stone shapes was generated based on the convex hulls of the refined visual hull
models of the first 200 garnets. Again, the stones are scaled along their three principal axes so that each
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Figure 7.13: Twenty bootstrap replications of the ROC curve shown in Figure 7.12b.

stone has unit convex volume and its caliper diameter along the three principal directions are in the ratio
2 : 3 : 4. These stones are illustrated in Appendix C on page 226.

Synthetic images were generated from the synthetic stones by rasterising the polygonal projections. Various
camera configurations were simulated. The camera configurations are based on the optimised frontier point
criterion (as described in Chapter 5, and illustrated in Figure 5.5 on page 86).

ROC curves computed from the synthetic data are shown in Figure 7.14. Boyer error was computed for the
nonconvex stones. The plots show similar behaviour to the real data: CIP-based methods outperform ET
error only for small numbers of cameras (fewer than six), and in these cases the outperformance is only for
certain operating points on the ROC curve.

7.5.5 Effect of Image Resolution and Camera Configuration

Synthetic data sets were further used to investigate the effects of camera configuration and image resolution
on match and mismatch distributions of ET error after pose alignment.

Camera configurations based on the optimisation criteria described in Chapter 5 were used. In addition, var-
ious six-camera configurations were investigated to illustrate the importance of the configuration of cameras
for a fixed number of cameras. The additional six-camera setups were generated by varying the elevation
angle of cameras positioned in a semicircle. Three examples are shown in Figure 7.15.

Figure 7.16 shows the match and mismatch ET error values for different camera configurations and factors
of resolution reduction. Many of the camera configurations show a similar trend: as the image resolution
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(f) 6 cameras

Figure 7.14: ROC curves computed using synthetic data sets: (a)–(b) nonconvex stones, (c)–(f) convex stones.
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./figures/matching/SixCamDiffElevation.eps

Figure 7.15: Six-camera setups with elevation angles of 60◦ (top row), 30◦ (middle row), and 0◦ (bottom row).

is decreased, the distribution of match errors rises in a predicable fashion, and the distribution of mismatch
errors stays in roughly the same position, rising only slightly.

There are, however, some pathological cases: in some cases cameras with coplanar optical axes produce low
ET errors for both match and mismatch pairs. This is because the epipolar tangencies occur in approximately
the same position for coplanar camera setups. (The extent to which the epipolar tangencies are not exactly
coincident is influenced by the degree of perspective distortion: if the cameras are moved back to infinity,
the epipolar tangencies will be exactly coincident.) The plots therefore clearly illustrate the undesirability of

the coplanar camera configuration for matching.

In the case of well-distributed cameras, camera configurations based on minimising the most isolated viewing
direction, and on minimising the sum of distances between frontier points produce similar results. This is
because any well-distributed camera setup is likely to produce epipolar tangencies that are well-separated
from one another, and whose residual error values are almost independent from one another.

Figure 7.17 illustrates the match and mismatch error values for different six-view configurations. The plots
demonstrate that the configuration of cameras is important. The camera configurations correspond to differ-
ent elevation angles. For low elevation angles, the configuration is close to the coplanar configuration, and
poor separation between match and mismatch error values is observed. As the elevation angle is increased the
separation improves, and then degrades again as the elevation angle becomes large and the viewing directions
converge.
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(e) 4 cameras, isolation
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(f) 6 cameras, coplanar
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(g) 6 cameras, frontier
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(h) 8 cameras, isolation
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(i) 8 cameras, frontier
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(k) 10 cameras, isolation

Figure 7.16: Plots of match values (red) and mismatch values (blue) for different camera configurations. Different levels of quanti-
sation noise are shown, corresponding to different degrees of resolution reduction from the original image resolution. Cameras are
configured to fulfil the frontier point criterion (frontier), the direction isolation criterion (isolation), or to have coplanar optical axes
with even angular distribution about 180◦ (coplanar).
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Figure 7.17: Plots of match values (red) and mismatch values (blue) for different six-view camera configurations. Cameras are po-
sitioned in a semicircle with uniform angular spacing. Each configuration has a different elevation angle φ, where φ = 0 corresponds
to a coplanar camera configuration.
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7.6 Summary

It has been demonstrated that attempting to align silhouette set pairs by minimising ET error provides a
means for determining whether the pair is a match or a mismatch. Methods for improving the efficiency and
the accuracy of the approach have been investigated.

To improve the matching efficiency, equations that make use of an orthographic projection model were
derived. The approach is valid for cases in which the stone is small with respect to the distances to the
cameras. This is the case with data sets captured using the six-camera setup. The orthographic-based method
runs approximately 30 times faster than the perspective-based method.

In an attempt to improve the accuracy of alignment-based matching, measures of inconsistency based on

the CIP constraint were investigated. Since the CIP constraint is stronger than the ET constraint, CIP-based
methods potentially make use of more information in the silhouettes to discriminate between matches and
mismatches. However, unlike the ET error, where pairwise reprojection errors are accumulated, CIP-based
methods make use of a cone intersection that is computed from all views simultaneously. This makes the
methods more sensitive to noise. Experiments carried out with synthetic data and downsampled real data
show the CIP-based errors outperformed ET error in terms of accuracy only for certain operating points of
the ROC curve for setups consisting of fewer than five cameras. The CIP-based methods are therefore not
considered any further in this thesis.

ET-based alignment was applied to all pairs across runs for the 2-mirror 5-view gravel data set (using a per-
spective camera model) and the 6-camera garnet data set (using the proposed orthographic approximation).
For the gravel data set, all 660 match pairs were found to have substantially lower ET error than any of the
144 540 mismatch pairs. For the garnet data set, all 2460 match pairs were found to have substantially lower
ET error than any of the 602 700 mismatch pairs. This indicates that ET-based alignment is an accurate ap-
proach for distinguishing between match and mismatch pairs for the types of data and camera configurations
considered in this thesis.

Synthetic data sets were used to investigate the effect of different camera configurations and different image
resolutions on match and mismatch distributions of ET error. As expected, with insufficient image resolution
and too few cameras, there is overlap between the match and mismatch distributions, and such a setup will
produce classification errors. Configurations in which optical axes are coplanar, or close to coplanar are
observed to result in distribution overlap that does not occur for well-distributed cameras at the same image
resolution.
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Chapter 8

Dissimilarity from 3D Shape
Approximations

8.1 Introduction

Alignment-based matching (as described in the previous chapter) is accurate, yet slow, since time-consuming
nonlinear optimisation must be applied for each comparison of two silhouette sets. Although alignment-
based matching is not prohibitively slow for verification tasks (i.e., determining whether a single pair of
silhouette sets is a match or a mismatch), the method is too slow to apply to all pairings for batch match-
ing. There are n2 pairings that can be made between silhouette sets from two runs of n stones. A naive
approach, where alignment-based matching is applied to all pairings for n = 1000 stones, would take almost
a week to process assuming approximately 0.5 seconds per pair (100 starting points and an orthographic
approximation).

To address this issue, a fast signature-based method for estimating the dissimilarity between two 3D shapes
is proposed. The method uses the idea of shape distributions introduced by Osada et al. [103, 104], along

with the compact representations of distributions that Rubner et al. [112,113] refer to as a signatures. Likely
matches can be identified with the signature-based method so that the more time-consuming alignment-based
matching need only be applied to a small number of cases. The signature-based method requires less than
one microsecond to assign a dissimilarity value to a silhouette set pair (after once-off preprocessing has
computed a signature for each silhouette set). This allows all pairings between two runs of n = 1000 stones
to be considered in less than one second.

In this chapter, the performance of the proposed signature-based method is quantified in terms of accuracy
when applied in isolation (i.e., without alignment-based matching) to verification and identification tasks.
The next chapter shows how the signature-based method can be combined with alignment-based matching
to efficiently solve the batch matching problem.
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Broadly, the proposed signature-based method for computing dissimilarity is carried out as follows. The
VEMH is computed from each silhouette set as an estimate of the 3D shape of the convex hull of the corre-
sponding stone. Caliper diameters are sampled from each VEMH in different directions to create a caliper
diameter distribution for each silhouette set. The caliper diameter distribution is approximated with a signa-
ture consisting of a vector of a small number of elements. Dissimilarity between pairs of signatures is rapidly
computed using the earth mover’s distance (EMD).

8.2 Related Work

There is a vast body of literature describing different approaches for defining dissimilarity between 3D
shapes. Several survey papers compare the different methods [21, 124]. The methods are broadly classified
into graph-based and feature-based methods.

Graph-based methods (such as determining the skeleton of an object) are appropriate for complex shapes,
and are typically computationally inefficient. Since stones are simple shapes, graph-based methods are not
an appropriate means for matching.

Local feature-based methods, such as shape contexts, have been shown to be effective for shape retrieval,
even in cases where only a portion of the object is available (partial matching). However, since these methods
are typically inefficient, and since local features cannot be accurately estimated from sparse silhouette sets,
they were not considered.

Global feature-based methods compare features (such as volume and moments) or distributions of features
computed from the 3D shape. Since global features or feature distributions can be rapidly compared, these
approaches have been identified by the survey papers as the most efficient approach to matching, and are
appropriate for use as pre-classifiers. The shape distribution framework of Osada et al. has been selected as
the basis of the method described in this chapter because of its simplicity, efficiency, and success in a range
of applications [22, 64, 104]. Although not considered by the original authors, the framework also facilitates
the use of the compact signature representation for which dissimilarity between distributions can be rapidly
computed.

Because of its speed, the shape distribution framework has been chosen by researchers for specific shape-
lookup applications. Canzar and Remy [22] use shape distributions as a faster alternative to alignment-based
techniques to look up protein models from a database that are similar to a query model. Comparisons of
353 766 700 protein shapes were completed in less than an hour, with 97% nearest neighbour agreement on
class label. Ip et al. [64] use shape distributions to create a query-by-example interface to a CAD database
of mechanical parts.

In their original work on dissimilarity measurement using shape distributions, Osada et al. introduce five
functions that are used to form shape distributions:
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• D1 is the distance between a random point on the surface and the centroid;

• D2 is the distance between two random surface points;

• D3 is the square root of the area of the triangle formed by three random surface points;

• D4 is the cube root of the volume of the tetrahedron formed by four random surface points; and

• A3 is the angle formed by three random surface points.

The D2 shape function was found to be the most accurate shape function for looking up 3D models of
everyday objects (cars, humans, phones, mugs), and was found to perform better than feature-based lookup
based on moments. In this chapter, these five functions are compared with caliper diameter distributions in
terms of matching accuracy.

8.3 Method

The signature-based method uses the VEMH as a 3D approximation of the convex hull of the corresponding
stone for each silhouette set. The distribution of caliper diameters over all directions is approximated by
sampling caliper diameters in a finite number of directions. Approximately uniform sampling is obtained by
using the vertices of a subdivided icosahedron [61] to specify the directions along which to compute caliper
diameters.

A subdivided icosahedron of Level L is formed from a subdivided icosahedron of Level L− 1 as follows.
Each face of the Level L−1 polyhedron is replaced with a vertex at its centre; all vertices are projected onto
the unit sphere, and the resultant convex hull is the Level L subdivided icosahedron. An icosahedron whose
vertices lie on the unit sphere is the Level 0 polyhedron. Different levels of subdivision of an icosahedron
are illustrated in Figure 8.1.

./figures/efficient/SubdivIcosaLev0.eps

(a) Level 0

./figures/efficient/SubdivIcosaLev1.eps

(b) Level 1

./figures/efficient/SubdivIcosaLev2.eps

(c) Level 2

./figures/efficient/SubdivIcosaLev3.eps

(d) Level 3

Figure 8.1: Different subdivision levels of an icosahedron.

The same caliper diameters are obtained along directions specified by antipodal vertex pairs of the subdivided

icosahedron, so only one vertex per antipodal pair is used.
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The dot product of a VEMH vertex v and the unit direction vector d̂ is used to determine the extent e of the
vertex in the direction:

e = v · d̂. (8.1)

The caliper diameter c in direction d̂ is the difference between the maximum and minimum extent values in
the direction:

c = emax− emin. (8.2)

Rubner et al. [112, 113] point out that distributions can be efficiently approximated as signatures instead of
histograms with bins of equal width. Creating signatures involves clustering sample points and representing
each cluster with a single point, typically the centroid of the cluster. For one-dimensional distributions,
clustering can easily be achieved by selecting histogram bins with equal counts rather than equal widths.
The mean values of the sample points in each bin form the signature. By varying the bin width so that bin
counts are equal, greater weight is given to describing parts of the shape distribution that have greater density.
The signature is therefore a more efficient approximation of the distribution than a histogram.

Figure 8.2 illustrates the process of forming a 10-element signature from a silhouette set for three examples.
Note that the silhouette sets in the first two columns correspond to the same stone (however, the stone is
oriented differently). The VEMHs and the signatures in the first two columns are therefore similar to one

another, whereas the VEMH and the signature from the third column appear dissimilar since they are formed
from a different stone.

Dissimilarity between pairs of signatures is computed using the EMD, which is the area between the CDFs
(cumulative distribution functions) of the two distributions.

The EMD between two signatures is efficiently computed by directly computing the area between the two
CDFs implied by the signatures. The PDFs (probability distribution functions) of the two distributions are
approximated by unit Dirac delta functions positioned at the signature element values. The area difference is
computed in O(n) time complexity (for n-element signatures) by traversing the two arrays and accumulating
the area difference between CDFs. Figure 8.3 illustrates the comparison of signatures between a match pair
and a mismatch pair formed from the three examples of Figure 8.2.

Note that Osada et al. [103] investigate various norms between both the PDF and the CDF for measuring
dissimilarity between distributions. The compact signature representation is not amenable to computing
distances between PDFs, so this approach is not investigated here. The EMD is equivalent to the 1-norm
between CDFs. The infinity-norm (i.e., maximum difference) between CDFs is a commonly used dissimi-
larity measure that is sometimes known as Kolmogorov distance. This is also not investigated here, since the
compact signature representations limit the number of discrete values that the Kolmogorov distance could
take on. For instance, the dissimilarity between two 2-element signatures could only take on three values: 0,
1 and 2.
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./figures/efficient/ImageStone19Run1.eps./figures/efficient/ImageStone19Run2.eps./figures/efficient/ImageStone24Run2.eps

./figures/efficient/VemhStone19Run1.eps./figures/efficient/VemhStone19Run2.eps./figures/efficient/VemhStone24Run2.eps

./figures/efficient/SigDotsStone19Run1.eps./figures/efficient/SigDotsStone19Run2.eps./figures/efficient/SigDotsStone24Run2.eps

Figure 8.2: Three examples of input silhouette sets (first row), corresponding VEMHs (second row), and caliper diameter sample
values and signature values (third row). The vertical component in the caliper diameter value plots is random (a visualisation aid).
Larger dots represent signature values computed as the mean of corresponding deciles of caliper diameter values (10 signature
elements are used). Decile colouring alternates to show correspondences with signature values. The silhouette set in the first column
matches the silhouette set in the second column, but not the silhouette set in the third column. ET-based pose optimisation has been
applied to align all VEMHs with the reference frame of the first column.

8.4 Experiments

8.4.1 Numbers of Samples and Signature Elements

Experiments were carried out to investigate the effect of the number of signature elements and the number
caliper diameter samples on the matching accuracy achieved using the signature-based method.

Bradley [16] recommends using the area under the ROC curve (AUC) for a single number measure of accu-
racy. The area under the ROC curve represents the probability that the dissimilarity value associated with a
mismatch selected at random will be smaller than the dissimilarity value associated with a match selected at
random. Figure 8.4 shows plots of AUC versus number of signature elements for the gravel and garnet data
sets. The plots illustrate that further improvements in accuracy are small after approximately ten elements
per signature. This indicates that, for the purpose of matching, ten signature elements are able to capture

most of the information in the caliper diameter distribution.
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./figures/efficient/DistriubutionStone19Stone19.eps./figures/efficient/DistriubutionStone19Stone24.eps
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Figure 8.3: Examples of caliper diameter distributions for a match (first column) and a mismatch (second column). The match pair
is formed from columns one (green) and two (red) of Figure 8.2, and the mismatch pair is formed from columns one (green) and
three (blue) of Figure 8.2. The first row shows distributions estimated from the caliper diameter samples using a kernel smoothing
method. The second row shows CDFs derived directly from the caliper diameter samples. The area between CDFs (which represents
the EMD) is shown in grey. The third row shows the CDFs implied by the signatures overlaid on the original CDFs. The fourth row
shows the area between the signature CDFs in grey. This represents the EMD between signatures. The EMD is smaller in the first
column (a match pair) than the second column (a mismatch pair).
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./figures/efficient/GravelNumBinsAuc.eps

(a) 2-mirror 5-view gravel data set

./figures/efficient/KingNumBinsAuc.eps

(b) 6-camera garnet data set

Figure 8.4: Plot of number of signature elements versus area under the ROC curve for (a) the 2-mirror 5-view gravel data set, and (b)
the 6-camera garnet data set. Error bars represent 95% confidence intervals computed using the subsets bootstrap. Six icosahedron
subdivisions were used to compute 3646 directions for caliper diameter samples from each VEMH. Note that nonlinear axes have
been used.

./figures/efficient/EmdVarySamples_Gravel.eps

(a) 2-mirror 5-view gravel data set

./figures/efficient/EmdVarySamples_King.eps

(b) 6-camera garnet data set

Figure 8.5: Plot of number of caliper diameter samples versus area under the ROC curve for (a) the 2-mirror 5-view gravel data set,
and (b) the 6-camera garnet data set. Error bars represent 95% confidence intervals computed using the subsets bootstrap. Curves
have been computed using both systematic sampling using subdivided icosahedra, and random sampling. The following numbers of
samples were used: 16 (corresponding to one subdivision of an icosahedron), 46 (two subdivisions), 136 (three subdivisions), 406
(four subdivisions), 1216 (five subdivisions), and 3646 (six subdivisions).

Figure 8.5 shows the results of an experiment in which the number of caliper diameter samples used to
estimate each distribution is varied.

Results are shown for both systematic sampling (based on icosahedron subdivision) and random sampling
(using a uniform random distribution of points on a sphere). The results clearly indicate that systematic
sampling outperforms random sampling using the same number of samples. Little further improvement is

163



observed with more than 406 samples (from four icosahedron subdivisions) in the case of systematic sam-
pling. Subsequent experiments therefore make use of 10-element signatures formed from 406 systematically
selected caliper diameter samples.

Using these parameter values, a 3.2 GHz Pentium 4 machine takes an average of 1.3 milliseconds to compute
the caliper signature from the VEMH for silhouette sets captured using the six-camera setup. Computing the
EMD between two signatures takes an average of 0.5 microseconds.

8.4.2 Comparison with ET Error

The EMD between signatures was computed for all match and mismatch pairs for the garnet data set and
compared with the ET error across the same pairs. A plot of EMD versus ET error is shown in Figure 8.6.
The EMD and ET error values are highly correlated with one another. The closeup in Figure 8.6b shows
that whereas the ET error separates all match pairs from mismatch pairs, the EMD between signatures does
not. The EMDs are however substantially faster to compute than the ET errors: the EMD between signatures
take approximately half a microsecond to compute and the ET errors take approximately half a second. The
EMDs are therefore faster to compute by a factor of a million.

./figures/efficient/PlotKingEmdEtAfar.eps./figures/efficient/PlotKingEmdEtClose.eps

Figure 8.6: Plot of EMD versus ET error for silhouette set pairs from the 6-camera garnet data set. The plot on the right is a closeup
of part of the plot on the left.

8.4.3 Different Methods of Estimating Stone Shape

Caliper diameter signatures were computed using the visual hull and the constant depth rim hull (CDRH) as
alternatives to the VEMH for estimating the convex hull of the stone from its silhouette set. The ROC curves
shown in Figure 8.7 illustrate that greater accuracy is achieved using the VEMH than the two competing
methods. The CDRH produces the worst results. Efron’s method [35] of visualising the statistical variability
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./figures/efficient/GravelCdrhRoc.eps

(a) 2-mirror 5-view gravel data set

./figures/efficient/KingCdrhRoc.eps

(b) 6-camera garnet data set
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(c) 2-mirror 5-view gravel data set
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(d) 6-camera garnet data set

Figure 8.7: ROC curves derived from (a) the 2-mirror 5-view gravel data set, and (b) the 6-camera garnet data set for caliper
signatures computed using different means to approximate the 3D convex hulls of stones: VEMHs, visual hulls, and CDRHs; (c)
twenty bootstrap curves drawn from the data presented in (a); (d) twenty bootstrap curves drawn from the data presented in (b).
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associated with the curves is illustrated in Figures 8.7c and 8.7d: the subsets bootstrap [10] is used to show
20 bootstrap replications (an estimate of what would be observed if the experiment were repeated 20 times
with new samples). The bootstrap replications indicate that the differences between the curves is sufficiently
low that the observed differences cannot be attributed to chance. The greater variability present in the bottom
right of the curves is an artefact caused by using many more mismatch pairs than match pairs. Part of the
reason that the plots for the gravel data exhibit greater variability than the plots for the garnet data is that
fewer runs were used (3 runs that provide 3 pair combinations across runs versus 5 runs that provide 10 pair
combinations across runs).

8.4.4 The Shape Functions of Osada et al.

Figure 8.8 shows ROC curves computed using the caliper diameter distribution and the shape functions
suggested by Osada et al. [104]. The caliper diameter distributions outperform all of the shape functions of
Osada et al. for both data sets.

./figures/efficient/GravelOsadaRoc.eps

(a) 2-mirror 5-view gravel data set

./figures/efficient/KingOsadaRoc.eps

(b) 6-camera garnet data set

Figure 8.8: ROC curves derived from (a) the 2-mirror 5-view gravel data set, and (b) the 6-camera garnet data set for caliper
signatures and for the shape functions proposed by Osada et al. [104]. One million samples of each shape function of Osada et al.
was used for each VEMH. This value was found to be sufficiently large so that further increases showed negligible improvement in
accuracy.

The shape functions show a wide range of performance, with the distance-based (DN) features degrading as
the number N of random surface points used to compute each sample is increased. The worst performing
shape function is the A3 feature, which is based on angle distributions rather than distance-based distribu-
tions.

Note that Osada et al. use the functions to identify similar shapes from existing mesh models. Here, dis-
similarity is based on approximate 3D shapes that are derived from silhouette sets. The more accurate
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performance of the caliper distribution indicates that the caliper distribution of a stone can be more accu-
rately inferred from the silhouette sets than Osada et al.’s shape functions (with respect to the variation of the
shape distribution amongst different stones). This does not imply that caliper distributions would outperform
Osada et al.’s shape functions for the 3D model retrieval application for which they were designed.

8.4.5 The Effect of Size and Shape

Part of the ability of the signature-based method to distinguish match pairs from mismatch pairs is the size
variability of the stones within each data set. To obtain an indication of the performance of the signature-
based method with only shape information, matching was carried out using normalised signatures. Normal-
isation was carried out by dividing each caliper diameter distribution by its mean. In addition, matching was
carried out using only size information: the mean diameter values were used as 1-element signatures.

Figure 8.9 shows the results in terms of ROC curves. As expected, the normalised signatures provide lower

./figures/efficient/GravelSizeShapeRoc.eps

(a) 2-mirror 5-view gravel data set
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(b) 6-camera garnet data set

Figure 8.9: ROC curves derived from (a) the 2-mirror 5-view gravel data set, and (b) the 6-camera garnet data set for caliper
signatures, normalised caliper signatures, and mean caliper diameter values. Normalised caliper signatures are normalised by
dividing by the mean caliper diameter to create signatures with unit mean in all cases. This demonstrates the accuracy obtainable
without scale enforcement after camera calibration, or equivalently, the accuracy obtainable with shape information but not size
information. The mean caliper diameter shows the accuracy obtainable with size information but not shape information.

accuracy than the original signatures, since size information has been discarded. However, the normalised
signatures outperform the mean caliper signatures for most operating points. This indicates that the caliper
signatures accurately capture some essence of stone shape, rather than discrimination accuracy being due to
the size variability present in the data sets. The plots indicate, for example, that an operating point can be
chosen (for either data set) so that the equal error rate is approximately 2%. This means that, for a certain
EMD threshold, the signature-based method would correctly classify a randomly selected match or mismatch
pair with 98% probability without scale information.
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8.4.6 Feature-Based Dissimilarity

The signature-based method was compared with a few simple feature-based methods. To justify its additional
complexity over the simpler feature-based methods, the signature-based method should provide superior
accuracy.

Four features were measured from each VEMH: volume and caliper diameters along the three principal

directions. The absolute difference between the two feature values associated with each pair was used as
a measure of dissimilarity. In addition, the Euclidean distance between a 3-vector consisting of all three
principal caliper diameters was used as a further simple feature-based method. ROC curves based on the
different methods are shown in Figure 8.10. The plots indicate that the signature-based method substantially

./figures/efficient/GravelMiscFeaturesRoc.eps

(a) 2-mirror 5-view gravel data set

./figures/efficient/KingMiscFeaturesRoc.eps

(b) 6-camera garnet data set

Figure 8.10: ROC curves derived from (a) the 2-mirror 5-view gravel data set and (b) the 6-camera garnet data set for caliper
signatures and feature-based measurements. Dissimilarity is defined by difference in volume, and difference in caliper diameter
measured along the three principal directions of the VEMH (primary, secondary, and tertiary). Dissimilarity defined as the Euclidean
distance between a 3-vector of the three caliper diameters along the principal directions (three principal) is shown. The ROC curve
computed using differences between mass measured on an electronic balance is shown for the gravel data set.

outperforms the simple feature-based methods. Caliper diameter along the tertiary principal direction (short
diameter) is the worst performing feature. Caliper diameter along the primary principal direction (long di-
ameter) outperforms caliper diameters measured along the other two principal directions. This is consistent

with observations made in Chapter 3 that indicate that a large degree of variability is associated with esti-
mating short diameters from silhouette sets. Using all three diameters provides better performance than any
one diameter.

The plot in Figure 8.10a also shows the ROC curve derived from the gravel masses measured using an
electronic balance. The plot does not appear stepped like the other curves. This is because of the discretised
nature of the mass measurements: more than one mass measurement difference corresponds to the same
value. The ROC curve of the mass measurements crosses the ROC curve of the signature-based method,
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indicating that which method is better depends on the operating point selected. The mass-based approach
performs poorly at low probability of false acceptance. This is because there are 61 mismatch pairs (of the
144 540 mismatch pairs considered) whose dissimilarity values (that is, differences between the measured
masses of two different stones) are exactly zero. (The resolution of the electronic balance was 0.01 grams;
the mean mass was 20.72 grams, and the standard deviation of the mass values was 6.91 grams.)

./figures/efficient/CmsPlotAfar.eps

(a)

./figures/efficient/CmsPlotCloseup.eps

(b)

Figure 8.11: (a) Rank versus cumulative match score plot derived using various measures of dissimilarity; (b) a closeup of part of
the plot shown in (a).

Rank versus cumulative match score plots [106] show the proportion of cases in which a query ranks within

the top r matches. For instance, a rank of r = 5 with a cumulative match score of 0.85 means that the correct
match ranks amongst the top five matches (ordered from smallest to largest EMD) in 85% of all cases. The
plots are computed by considering each case as a query in turn, and comparing each query with the other
cases from another run. All combinations of runs are considered, with cases from each run being considered
as queries and as database entries. Rank versus cumulative match score plots are useful for quantifying
performance in closed universe [106] scenarios, where the query is known to match one of a certain number
of database entries.

Figure 8.11 shows the rank versus cumulative match score plot derived from the gravel data. This provides
an indication of how well the signature-based approach performs at the task of identifying a stone from
a database of 220 pre-stored silhouettes sets, one of which is known to match the query silhouette set. A
practical system could use alignment-based matching to classify database-query pairs in an order specified by
signature-based dissimilarity. The plot indicates that the probability of the first pair considered by alignment-
based matching being a match is 98%.

The plot shows that the signature-based approach outperforms the feature-based approaches. Although the
signature-based method is more likely than the measured mass method to contain the match in the pairs
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ranked up to one and two, the measured mass method is more likely to contain the match in the pairs ranked
up to three and four.

8.5 Summary

This chapter has proposed a simple method based on caliper distribution signatures for computing a measure
of dissimilarity between silhouette sets. The signatures and the dissimilarity between signatures can be
rapidly computed.

The method achieves its efficiency by using approximations to 3D shape, rather than relying on silhouette
consistency constraints. This approach places an inherent limitation on the accuracy that can be achieved
using the method, since there are inherent ambiguities in inferring 3D shape from a sparse silhouette set.

Caliper distribution signatures have been shown to outperform simple feature-based methods (such as vol-
ume) as well as the five approaches introduced by Osada et al.

Since the method facilitates rapid ranking of silhouette sets in order of similarity, the signature-based method
can be used in conjunction with the alignment-based method described in the previous chapter to identify a
stone from a query silhouette set, by matching a previously stored silhouette set in a database.
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Chapter 9

Batch Matching

9.1 Introduction

Batch matching is finding the one-to-one correspondences between silhouette sets from two unordered runs
of the same batch of stones: each silhouette set in the first run must be matched to the silhouette set in the

second run that was produced by the same stone.

This is a square assignment problem since each of the n objects in the first run must be matched to one of
the n objects in the second run. The matching can be specified by an n×n permutation matrix in which each
element is either one or zero (indicating match or mismatch), and each row and each column sums to one.

The proposed approach to batch matching makes use of the desirable characteristics of the two measures
of dissimilarity developed in Chapters 7 and 8: alignment-based matching, where ET error is the measure
of dissimilarity, and signature-based matching, where the EMD between signatures is the measure of dis-
similarity. The desirable characteristic of alignment-based matching is its accuracy, whereas the desirable
characteristic of signature-based matching is its speed.

Signature-based matching is used to compute a measure of dissimilarity between all pairings of silhouette
sets in the first run with those in the second run: for n stones there are n2 pairings. Prior knowledge of the
distributions of dissimilarity values for match and mismatch pairings is used to estimate likelihood ratios
for each pairing (indicating the likelihood of being a match). Pose optimisation is then successively applied
to the pairing with the greatest likelihood ratio. If pose optimisation from a given starting point (initial
pose estimate) leads to a sufficiently low error, then the pairing is labelled a match and is removed from
consideration. Otherwise the likelihood ratio is updated to reflect that a failed pose optimisation from the
given starting point indicates that the pairing is less likely to be a match. Starting points based on the
principal axes of 3D approximations to the stone are used, followed by uniform random orientations. The
proposed greedy algorithm (which processes the pairing with the greatest likelihood ratio at each iteration)
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is demonstrated to produce close to optimal performance on a test set of six-view silhouettes of 1200 uncut
gemstones (i.e., the time spent processing mismatches is small). On a 3.2 GHz Pentium 4 machine, the
once-off per silhouette set computations take approximately 50 seconds. Computing dissimilarity between
shape distributions takes 0.7 seconds and pose optimisation takes 17 seconds (of which 15 seconds is spent
considering matches and 2 seconds on mismatches).

There are n2 comparisons (or pairings) that can be made between silhouette sets in the first run and silhouette
sets in the second run. Although the proposed algorithm is still inherently of at least O(n2) time complexity,
the n2 component dominates only for very large n. This means that batches of more than a thousand stones
can be matched efficiently.

The batch matching algorithm makes use of several key ideas that together achieve efficiency:

1. Shape distribution dissimilarity for ranking pairings by likelihood of match. EMDs are computed
between estimated caliper diameter distributions for each of the n2 pairings between first run silhouette
sets and second run silhouette sets. (EMDs are computed efficiently, taking less than a microsecond
per pairing.) Likelihood ratios are computed for each pairing from the EMD using prior knowledge of
distributions of EMDs for match and mismatches. A priority queue is used to access pairings so that
the most likely matches can be processed first.

2. Recomputing the most likely match after pose optimisation from one starting point. Pose opti-
misation proceeds by optimising from a single pose estimate at a time. After pose optimisation, the
likelihood ratio is updated if the associated ET error is above the threshold for matches. (Knowing
that a pose optimisation fails from a given starting point implies that a match is less likely than before
this is known). The pairing is pushed back into the priority queue with its updated likelihood ratio. If
the likelihood ratio has been decreased by a sufficiently small amount, then the pairing will remain at
the front of the priority queue, otherwise a new pairing will be selected for processing. This approach
ensures that ET-based pose optimisation is always applied to the pairing that is most likely a match
(based on EMD between signatures and number of failed pose optimisations so far).

3. Certainty of a match implies certainty of mismatches. If ET-based pose optimisation leads to an
ET error that is below the match threshold, the pairing is labelled as a match (i.e., the probabilistic
framework is abandoned and a hard decision is made). This means that all other pairings associated
with the two matched silhouette sets can be labelled as mismatches and removed from consideration.
This amounts to zeroing the remaining permutation matrix elements that share a row or a column with
the matched element. In other words, finding a match implies that mismatches have been found too.
(Although possibly obvious, this removal of mismatches from consideration is an important factor in
substantially reducing the running time of problems in which a one-to-one correspondence exists, and
is therefore explicitly mentioned.)
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4. Good starting points provided by moments of 3D shape approximations. Pose starting points
are selected using the principal axes of a 3D approximation to the stone as a guide. The first pose
starting point aligns the principal axes of the two 3D approximations and ensures that their third order
moments have the same sign. This starting point leads to an ET error below the match threshold in
approximately 80% of match cases. The next three pose starting points align the principal axes in the
three other possible ways. Subsequent pose estimates align the centroids of the 3D approximations
and select the orientation component using a uniform random rotation.

9.2 Approach

This section describes the greedy algorithm that was designed to efficiently solve the one-to-one correspon-
dence problem for silhouette sets.

9.2.1 Design Rationale

The proposed algorithm is based on the assumption that all matching pairs can be aligned so that the ET error
across the two silhouette sets is below a fixed threshold value, and that no mismatch pairs can be aligned so
that ET error is below the threshold. This assumption is valid if noise levels are sufficiently low, and stone
shapes are sufficiently dissimilar. (Section 9.3.2 demonstrates the consequences of using a data set for which
the assumptions do not hold.) The threshold must be determined from a training data set.

The aim of the algorithm is to find the n silhouette set pairs with ET errors below the threshold. Once pose
optimisation has determined pose parameters that align n pairs sufficiently well (i.e., ET error across the
silhouette set pair that is below the threshold), the algorithm terminates, since the one-to-one correspondence
has been determined.

ET-based pose optimisation is time-consuming, and for an efficient matching algorithm it must be kept to a
minimum. Efficiency is achieved by combining two strategies:

1. As little time as possible is spent on pose optimisation between pairs that do not match.

2. As little time as possible is spent optimising from starting points (initial pose estimates) that lead to

insufficiently low ET errors (local minima) for pairs that do match.

The first strategy is implemented by selecting, in each iteration, the pairing most likely to match (based on
the information considered: EMD and number of optimisations failed so far). Since the most likely match is
selected at each iteration, rather than trying to minimise total running time, the proposed algorithm is greedy.
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The second strategy is carried out by using the principal axes and moments of 3D approximations to each
stone to select the starting points that are most likely to lead to the correct alignment of matching pairs.

Figure 9.1 shows a flow chart of the greedy algorithm. Note that the algorithm could finish after n− 1

./figures/UnorderedBatch/FlowChart.eps

Figure 9.1: Flow chart for the proposed greedy algorithm.

matches are found, since the single remaining unmatched element must be the match. Instead, all n elements
are matched with ET-based pose optimisation. This results in a very small increase in total running time.

9.2.2 Initial Likelihoods from EMDs

EMDs between caliper diameter signatures are computed for each of the n2 pairings between silhouette sets
in the first run and silhouette sets in the second run.
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The EMDs are used to order the pairings so that pairings that are the most likely to match are considered
first. A reasonable approach would be to process the pairings (apply pose optimisation) in the order specified
by the raw EMD values. This would, however, require the number of pose optimisations to be considered
for each pairing to be specified in advance. Alternatively, a single pose optimisation could be applied for
each pairing in turn up to a certain threshold on the EMD, after which pairings are reconsidered in turn from
different starting points.

A better approach, however, is to update the likelihood of a pair being a match based on the additional infor-
mation of the number of failed optimisations that have been carried out for the pair. (A failed optimisation
is one in which a pose with an associated ET error below the match threshold could not be found.) By using
additional information, matches are more likely to be selected than mismatches than if only the raw EMD
values were used. This requires that the EMD values be mapped to likelihood ratios so that they can be

updated using Bayes’s rule.

9.2.3 Training

To determine the mapping from EMD values to likelihood ratios, a training set is required. A training

set consists of multiple runs of silhouette sets of a batch of stones for which the correspondence between
silhouette sets is known. The training set is a random sample from the population of stones for which
the batch matching is to be used. The ratio of match density to mismatch density must be estimated for
all EMD values. Many methods exist for estimating probability density from samples [34]. This problem
also has the additional constraint of monotonicity: a greater EMD implies a lower likelihood of match.
Arandjelović describes a method to enforce the constraint of monotonicity [2]. A simple histogram method,
however, was found to produce good results, so more sophisticated methods were not implemented. A coarse
histogram (five bins) was formed for EMD values from match pairs in the training data and for mismatch
pairs in the training data. Ratios of normalised bin counts at the bin centres were used to form a mapping
from EMD values to likelihood ratios. Piecewise linear interpolation was used to determine values between
the bin centres.

The training procedure also uses the training set to determine a threshold value on the ET error for matches,
and to estimate the probability of failed alignment for a match pair after s starting points have been used.

To determine a threshold value, the largest ET error across silhouette sets for a match, and the smallest ET
error across silhouette sets for a mismatch are estimated. The threshold is chosen to be midway between
these two values.

Since applying pose optimisation from many starting points to all training set pairs is too time-consuming,
the following method was used. The mismatch pairs are ordered by EMD between signatures, and pose
optimisation is only applied to the first 1000 mismatch pairs. Pose optimisation is applied to the cases only
from the four starting points specified by principal axis alignment. This approach ensures that an ET error
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value that is approximately as small as the smallest mismatch error can be computed in a reasonable running
time.

The estimate of the largest ET error for match pairs is computed by applying pose optimisation from the four
principal axis starting points to each match pair. Pose optimisation is then applied from a random starting
point to the match pair whose lowest ET error is the largest. This is repeated until the match pair with largest
minimum ET error, has had pose optimisation applied from 1000 random starting points. This match pair is
used to estimate the largest ET error across silhouette sets for a match.

Once the threshold has been specified, the proportion of match cases that lead to an ET error below the

threshold value is computed for starting points based on the principal axes, followed by random starting
points.

9.2.4 Forming a Priority Queue

Pairings are stored in a priority queue that is prioritised by the value specifying the likelihood of match. The

indices of the silhouette sets that make up the pair are also associated with each element in the priority queue.
These indices are used to reference a permutation matrix that is built up as the algorithm progresses. When a
match is found, the corresponding permutation matrix element is changed from ‘unknown’ to one, and other
elements in the same row and column are zeroed. When an element that references a zero in the permutation
matrix is at the front of the priority queue, it is popped from the queue and no pose optimisation is applied
since the pair is already known to be a mismatch. The number of failed optimisations that have been applied
to the pair is also associated with each element in the priority queue.

9.2.5 Pose Optimisation

Pose optimisation is applied to the pair of silhouette sets associated with the front of the priority queue
(provided that this element has not already been labelled as a mismatch, in which case it is popped and the
next element is considered). Pose optimisation attempts to determine the relative pose between two silhouette
sets with the assumption that the sets were produced by the same stone.

The starting points (initial pose estimates) for pose optimisation are based on the principal axes and moments
of inertia of the VEMHs from each silhouette set. Choosing the pose that aligns the principal axes of the
3D stone approximations and that ensures that the third order moments have the same signs, leads to an ET
error below the match threshold value in approximately 80% of cases when the pair is a match. A pose
in which the translational component of pose is chosen so that centroids from the two 3D approximations
coincide, and the rotational component is a uniform random rotation, leads to the correct alignment in only

about 10% of cases. After considering all four possible pose alignments based on the principal axes, the
correct alignment is found in all but about 2% of cases (as illustrated in Figure 6.8 on page 111).
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The first four initial pose estimates for a pair are therefore chosen to correspond to the four poses that
align the principal axes. The pose that keeps the signs of the third order moments unchanged is first. The
second two poses change only one sign of the third order moments. After four poses have been considered,
uniform random orientations are used for the following poses. A systematic orientation sampler described in
the robotics literature [142] was considered, but some initial experimentation showed no evidence of better
results.

Note that the one-to-one matching constraints remove the need to decide on the number of pose optimisations
to apply: optimisations are applied until all the matches are found. Compare this with the situation of
searching for a tag stone that may or may not be present in a batch of stones: in this case a decision must be
made to stop applying pose optimisation after it has been applied from a certain number of starting points.

9.2.6 Updating Likelihood Values

After a failed optimisation, the likelihood ratio associated with a pair is updated to reflect both the associated
EMD value and the number of failed optimisations.

The probability of a match given a certain number of starting points from which optimisation has been applied
must be estimated from a training data set. It is assumed that optimisation will always fail with mismatch
pairs. The proportion of cases that fail after one, two, three, and four pose optimisations is computed from
the training data (using the pose ordering as described in Section 9.2.5). If the probability of failed pose
optimisation from a single pose with a random orientation component is p1, the probability pm of failure for
all of m random starting points is

pm = pm
1 . (9.1)

The value of p1 will vary for different silhouette set pairs. As an approximation, the mean value of p1 is
estimated from the training set, and Equation 9.1 is used to estimate pm.

The posterior odds P(Hmatch|data)/P(Hmismatch|data) of an element being a match is given by Bayes’s rule:

P(Hmatch|data)
P(Hmismatch|data)

=
(

P(data|Hmatch)
P(data|Hmismatch)

)(
P(Hmatch)

P(Hmismatch)

)
, (9.2)

where Hmatch is the match hypothesis and Hmismatch is the mismatch hypothesis. Note that the prior odds
P(Hmatch)/P(Hmismatch) are the same for all elements (the stones are assumed to be in random order), so

ordering by the likelihood ratio P(data|Hmatch)/P(data|Hmismatch) is the same as ordering by the posterior
odds.

The updated likelihood ratio rupdated is computed from new observations as follows:

rupdated =
P(data|Hmatch)

P(data|Hmismatch)
rd , (9.3)
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where rd is the likelihood ratio computed from the EMD value. Here, the data specifies the number of failed
optimisations so far. Since P(data|Hmismatch) = 100%,

rupdated = psrd , (9.4)

where ps is the proportion of match cases for which optimisation fails in all cases after using s starting points.
For s > 4, ps is estimated using

ps(s) = ps(4)ps−4
1 . (9.5)

Note that likelihood ratios are computed without using the one-to-one correspondence constraint. Making
use of this constraint does not aid efficiency, since each pairing requires evaluation of a function of val-

ues associated with all other pairings. Knowledge of the one-to-one constraint is therefore discarded, and
likelihood ratios are computed without considering values associated with other pairings.

9.3 Experiments

This section describes a set of experiments that were carried out using a C++ implementation of the proposed
algorithm. The experiments aim to quantify the behaviour of the proposed algorithm in terms of running time,
and to quantify the relative importance of the various components in keeping the running time as small as
possible.

Experiments were carried out using a data set of 1423 uncut gemstones (pictured in Appendix C, pages 222–

224). Ten runs of six-view image sets were captured, yielding a total of 1423× 10× 6 = 85 380 images.
Computations were carried out on a 3.2 GHz Pentium 4 machine. For each trial, runs corresponding to 243
randomly selected stones were used as a training set, leaving the remaining 1200 stones as a test set. All
45 run pair combinations of 243 stones were used for training, providing 10 935 match pairs and 2 646 270
mismatch pairs across runs. For each trial, two runs were selected at random from the ten available runs to
form a test set of two runs of 1200 silhouette sets.

9.3.1 Preprocessing Running Time

Table 9.1 gives a breakdown of the mean running time for the various preprocessing components. Ten signa-
ture elements were computed for each silhouette set using four subdivisions of an icosahedron to determine
the caliper sampling directions. The results show a mean processing time of 20.7 ms per silhouette set. The
once-off preprocessing per silhouette set is therefore sufficiently fast that it can be carried out online as the
stones are fed through the six-camera setup at a rate of ten stones per second.
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Computation
Running

Time
Percentage

of Total
segmentation 9.0 ms 43.5%

convex viewing edges 5.3 ms 25.6%
3D convex hull 3.2 ms 15.5%

2D convex hulls 1.5 ms 7.2%
caliper signatures 1.3 ms 6.2%

moments 0.3 ms 1.4%
edge angle data structure 0.1 ms 0.5%

Total 20.7 ms 100%

Table 9.1: Mean running time for preprocessing a 6-view silhouette set.

9.3.2 Batch Matching with the Proposed Greedy Algorithm

The proposed batch matching correctly matches silhouette sets across two runs of 1200 stones in approxi-
mately 68 seconds. The once-off per silhouette set preprocessing takes approximately 50 seconds. Comput-
ing dissimilarity between shape distributions takes approximately 0.7 seconds and pose optimisation takes
17 seconds (of which 15 seconds is spent considering matches and 2 seconds on mismatches).

Varying Moments and Shape Approximation Methods Used

A set of experiments was carried out to determine the effects of the number of moments used to form initial
estimates and the shape approximation method used.

Using only first order moments (moments up to order 1) means using only the centroids of the shape ap-
proximation (VEMH, visual hull, or CDRH) to form the positional component of initial pose; the rotational
component is random.

Using first and second order moments (moments up to order 2) makes use of the principal axes of the shape
approximation for the first four initial pose estimates. The four possible alignments of the principal axes are
considered in random order.

Using first, second, and third order moments (moments up to order 3) uses the third order moments to order
the four possible alignments of the principal axes as described in Chapter 6.

Table 9.2 shows the mean time over 30 trials spent on pose optimisation. The same starting point selection
and shape approximation methods used for testing were also used for training in each case. The results
indicate that the VEMH produces shorter running times than the visual hull and the CDRH. Using more
moments for initial pose estimates reduces running times.
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VEMH VH CDRH
moments up

to order 1
273.5 515.6 1796.6

(208.7, 64.8) (207.4, 308.3) (210.4, 1586.2)
moments up

to order 2
30.4 65.3 297.1

(22.0, 8.4) (27.4, 37.8) (39.9, 257.2)
moments up

to order 3
17.4 38.7 198.0

(15.0, 2.4) (21.4, 17.2) (35.6, 162.5)

Table 9.2: Mean running time (in seconds) spent on applying pose optimisation for batch matching of 1200 silhouette sets of uncut
gemstones across two runs. Times spent on matches and on mismatches are shown in brackets.

Running Time as a Function of Number of Stones

The next set of experiments investigates how running time is affected by varying the number of stones.
Random subsets of up to 1200 stones were selected as test sets.

Figure 9.2a shows a plot of number of stones versus running time using the VEMH and moments up to order
3 for determining starting points.

./figures/UnorderedBatch/vemh_bm_2.eps

(a)

./figures/UnorderedBatch/cdrh_bm_2.eps

(b)

Figure 9.2: Running time for batch matching different numbers of stones: (a) using the VEMH and moments up to order 3, (b)
using the CDRH and moments up to order 1. The running time consists of time spent setting up the priority queue and applying
pose optimisation to matches and to mismatches.

Setting up the priority queue takes only a small amount of time, yet populating the priority queue is of
O(m logm) complexity for m elements. Since there are m = n2 elements for n stones, the time complexity is
O(n2 logn2); setting up the priority queue will become the most time consuming component for sufficiently
large n. Applying pose optimisation to match pairs takes time proportional to the number of stones. However,
for the values tested here it forms the largest component of the running time. Although the time spent on
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mismatches is O(n2), for values of n tested, the running time is small. For values of n up to 1200, the running
time is therefore approximately proportional to the number of stones.

The experiment was repeated using the CDRH and moments up to order 1 (only random rotations were
used). This was done to observe the quadratic dependence of the time spent optimising mismatch pairs on
the number of stones. The results are shown in Figure 9.2b. The quadratic dependence is more apparent than
in Figure 9.2a. A larger proportion of running time was spent considering mismatch pairs than match pairs
for larger numbers of stones.

Using Downsampled Input Images

Image downsampling was used to investigate the behaviour of batch matching in cases in which image noise
is high enough that some ET errors across a silhouette set fall on the wrong side of the threshold. Since
the proposed batch matching algorithm applies pose optimisation to pairs until all matches are found, the
algorithm will fail to terminate if there are insufficient pairs with ET errors below the threshold. A limit on
the time spent on pose optimisation must therefore be imposed to force termination.

Table 9.3 shows the error rates achieved for different degrees of downsampling and for different time limits.
(An error is incurred if a silhouette set is matched to the wrong silhouette set or is not matched at all; the

Time Limit [seconds]
5 10 20 40 80 160

original resolution 54.4% 22.0% 0.5% 0.0% 0.0% 0.0%
2×2 binning 57.1% 26.3% 0.5% 0.0% 0.0% 0.0%
4×4 binning 53.2% 14.8% 0.5% 0.5% 0.4% 0.4%
8×8 binning 41.8% 22.9% 9.6% 8.7% 8.7% 8.8%

16×16 binning 61.6% 39.2% 26.8% 14.4% 12.6% 12.7%
32×32 binning 76.8% 65.6% 60.8% 60.1% 60.1% 60.1%
64×64 binning 96.0% 95.5% 95.5% 95.5% 95.5% 95.5%

Table 9.3: Mean error rates over 30 trials for batch matching two runs of 1200 stones with a time limit imposed on the running time
spent on pose optimisation. Results are shown for different levels of downsampling (pixel binning). Each error rate corresponds
to batch matching of two runs of 1200 silhouette sets of uncut gemstones. Images were segmented using the subpixel resolution
method described in Appendix A.

error rate is the number of errors divided by the number of stones.) There is little reduction in the error
rate between 40 and 80 seconds, indicating that further matches are unlikely to be found. At levels of

downsampling greater than 2× 2 binning, the silhouette sets are not all correctly matched up for even the
largest time limit. The error rate increases as the degree of image downsampling is increased.

The approach of imposing a time limit may be useful for cases where image resolution is poor. Image
resolution may be insufficient for all match and mismatch errors to be on opposite sides of the ET error
threshold; however, a 100% correct matching may not be a necessity. This situation can occur in cases where
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one is interested in estimating statistical shape properties of a batch of stones using merged silhouette sets.
If a small number of silhouettes is not matched, or is incorrectly matched, this may have negligible effect on
the shape property estimates, especially since mismatched pairs will tend to be of similar shape.

9.3.3 Batch Matching with Caliper Diameter Distributions

An experiment was carried out to investigate the error rates and running times achievable using only the
likelihood ratios derived from EMDs between caliper diameter distributions (i.e., not using ET-based pose
optimisation.) The same likelihood ratio values that were computed for the experiments described in Sec-
tion 9.3.2 were used as input.

The maximum likelihood permutation is the permutation that results in the highest product of likelihood
ratios. To compute the permutation, the logarithm of likelihood ratios is used, so that the sum can be max-
imised, rather than the product. Finding the permutation of a square matrix that minimises summed cost is
a well-known combinatorial optimisation problem that can be solved using the Hungarian Method [23]. A
Matlab implementation of the Hungarian Method (provided by Niclas Borlin of Umeå University, Sweden)
was used to determine the permutation that maximises the sum of the logarithm of likelihood ratios.

Results are shown in Figure 9.3. Each data point corresponds to an experiment in which 10 runs of 223

./figures/UnorderedBatch/EmdErr_2.eps

Figure 9.3: Plot of number of test stones versus error rate for batch matching based on caliper distribution using different methods
for approximating stone shape. Two methods are used for determining the permutation matrix: the Hungarian Method, and selecting
the row with the minimum EMD for each column of the permutation matrix.

randomly selected stones are used as a training set and the test set of stones is randomly selected from the
remaining 1200 stones. The two runs used as the test set for each data set were randomly selected from the
10 available runs. For each training and test set, separate results were computed using the VEMH, visual
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hull and CDRH for shape approximation. The match permutation was computed using both the Hungarian
Method, and a simpler minimum distance method that selects the row with the minimum EMD for each
column of the permutation matrix.

The results indicate that the batch matching using only EMDs cannot be carried out without error for the
data sets considered. The VEMH outperforms the visual hull, which in turn outperforms the CDRH for
shape approximation. The Hungarian Method outperforms the minimum distance method for forming the
permutation matrix from a square matrix of EMD values. For batch matching of 1200 stones, the most accu-
rate approach (VEMH for shape approximation and the Hungarian Method for computing the permutation)
achieves an error rate of approximately 5%.

These experiments demonstrate that the information contained in the EMD values is an important aid to the
batch matching process, but is alone insufficient. ET-based pose optimisation must also be used for matching
that is both efficient and correct.

9.4 Summary

An algorithm has been designed and implemented for efficiently matching two runs of silhouette sets of the
same batch of stones. Various approaches were combined to ensure efficiency:

1. Likelihood ratios based on rapidly computed EMD values between estimated caliper distributions are
used to identify the pair (of those still under consideration) that is most likely a match.

2. ET-based optimisation is applied to the most likely match pair from a single starting point before
updating the likelihood ratio for the pair if the pose optimisation fails.

3. If a match is found (alignment with sufficiently low ET error across the two silhouette sets), then pairs
that are implied to be mismatches are removed from consideration.

4. Moments of 3D approximations to the stone computed from pairs are used to select initial pose esti-
mates most likely to lead to correct alignment of the two silhouette sets.

On a test set of 1200 uncut gemstones, pairs of runs of six-view silhouette sets are matched in approximately
18 seconds on a 3.2 GHz Pentium 4 machine. The once-off per silhouette set processing takes approximately
50 seconds; the computations are sufficiently fast to be computed online as the stones are passed through
the six-camera setup. This represents a substantial improvement on a naive approach where alignment-based
matching is applied to all pairs (such an approach would take weeks to complete). The proposed approach
is also superior to the naive approach in that the number of starting points to consider for aligning each pair
need not be decided in advance.
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For correct matching, the proposed method requires the minimum ET error for all match pairs to be below a
pre-specified threshold (determined with a training set), and the error for all mismatch pairs must be above
this threshold. Although this is the case for the data sets and camera configuration considered, this is not
guaranteed to hold. If the criterion fails to hold, then the algorithm may fail to terminate. To force termina-
tion, a limit can be imposed on the time spent on pose optimisation. The effects of applying the algorithm
to cases in which silhouette set quality is insufficient to meet the criterion has been demonstrated by using
downsampled versions of the original images. As the time limit is increased, improvements in the error rate
become negligible. As the degree of downsampling is increased, the error rate increases.

Experiments that use the Hungarian Method to estimate the match permutations using likelihood ratios based
on EMDs between signatures, and not using ET-based alignment, produced errors (a correct classification
rate of approximately 95% is achieved for matching 1200 silhouette sets across two runs). This justifies

combining the signature-based matching with alignment-based matching to achieve results that are both
correct and efficiently computable.

184



Chapter 10

Comparing Silhouette-Based Sizing with
Sieving

10.1 Introduction

Particle shape analysts are interested in (1) emulating sieving with silhouette-based methods, (2) quantifying
the repeatability of silhouette-based sieve emulation, and (3) investigating the effect of individual particle
shape on the sieve aperture through which the particles pass [42, 109]. This chapter describes an experiment
which uses the methods developed in this thesis to address all three of these issues.

The repeatability of sieve sizing cannot be evaluated by sieving particles individually. The sieve bin that each
particle ultimately lands in is a function not only of particle shape, but also the length of time over which the
sieves are shaken, and the presence of other particles in the sieves.

Knowing which sieve bins each particle lands in over multiple runs of batch sieving provides (1) an un-
derstanding of the shape characteristics that determine bin classification and bin classification variability,
and (2) a more accurate quantification of repeatability than if histograms alone were considered. By ap-
propriately quantifying the repeatability of sieving, it can be directly compared with silhouette-based sizing
methods. Demonstrating that silhouette-based methods are at least as repeatable as sieving is an important
step in having such methods accepted by particle shape analysts as an alternative to sieve sizing.

The minimum enclosing cylinder of a silhouette-based 3D approximation to the stone shape (both the VEMH
and the visual hull are tested) is used for sieve emulation. This approach is based on the assumption that
the minimum enclosing cylinder of a stone provides a good approximation of the smallest circular sieve
aperture through which the stone may pass. By comparing the silhouette-based estimate of minimum cylinder
diameter with the sieve bins in which each stone is actually found to land up in, the accuracy of the silhouette-
based sieve emulation can be quantified.
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The experiment described in this chapter was carried out as follows. A data set of 494 garnets was sieved
fifteen times using a stack of sieves with five bins. (The 494 stones are illustrated using refined visual
hull models in Appendix C on page 227.) The five sieve bins are separated by circular sieve apertures with
diameters of 4.521 mm, 5.410 mm, 5.740 mm, and 6.350 mm. For each of the fifteen sieving runs, the garnets
were manually sieved for 30 seconds. After each run of sieving, the garnets were passed through the six-
camera setup in five sub-batches according to the sieve bin in which they landed. This means that the sieve
bin corresponding to each six-view silhouette set is known. By matching the silhouette sets that correspond
to the same stones across the fifteen runs, the bin in which each stone landed for each run is determined.

The experiment allows the performance of the matching procedure to be evaluated too. Although the stone
identity associated with each silhouette set is not known in advance, consistency constraints across multiple
runs can be used to evaluate matching performance. For instance, if A matches B, and B matches C, then A

must match C.

10.2 Batch Matching

For the purposes of matching the stones across runs, batch matching was applied to batches of silhouette
sets from each run and the run’s immediate successor. Preprocessing (computing signatures and moments
from the raw image sets) requires approximately 20 ms per silhouette set. Although for this experiment

preprocessing was carried out offline, it is sufficiently fast to be carried out online as the stones pass through
the feeder at a rate of approximately 10 stones per second. After preprocessing, batch matching across
two runs of the 494 stones requires approximately three seconds of processing time. (This is faster than
matching the same number of gemstones because the garnets are less compact and therefore alignment tends
to require fewer optimisations.) The batch matching is therefore substantially faster than sieving the stones
and feeding them through the six-camera setup, and can clearly be considered to be sufficiently fast for
practical experimental purposes.

Batch matching was applied to all run pairings to check consistency. There are
(15

2

)
= 105 pairs of runs that

are formed from the 15 runs. The data set of 246 garnets was used as training data to determine parameters
for the experiments described in this chapter.

A necessary condition for correct matching is that the matching results are consistent across runs. If a
silhouette set from Run A matches one from Run B and one from Run C, then the silhouette sets from Run B

and Run C must match each other. By adding up the number of cases in which triplets of pairwise matches
are consistent, a measure of consistency can be made. There are

(15
3

)
= 455 triplets of runs and 494 cases in

each run, yielding a total of 455×494 = 224770 triplets.

All 224770 triplets were found to be consistent for the batch matching. This result was compared with
other simpler approaches to matching. Table 10.1 shows the results for different matching methods that were
tested. The first column of the table (Minimum Dissimilarity) shows results for matching using the minimum
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Matching
Method

Minimum
Dissimilarity

Square
Assignment

caliper signatures 94.0% 98.8%
caliper, three principal 76.0% 84.0%

VH min cylinder diameter 62.9% 19.8%
VEMH min cylinder diameter 63.0% 24.5%

VH nonconvex volume 63.1% 26.7%
VH convex volume 63.5% 25.5%

VEMH convex volume 63.4% 27.7%

Table 10.1: Percentage of consistent triplets of pairwise matches computed using different matching methods.

dissimilarity case in the other run as the match. The second column (Square Assignment) shows results for
matching using square assignment, which selects the permutation that results in the maximum sum of log
likelihood ratios (described in Section 9.3.3).

The first row of the table shows the results of matching using dissimilarity based on the caliper signatures
described in Chapter 8. The second row of the table uses results based on dissimilarity defined as the
Euclidean distance between three caliper diameters of the VEMH. The remaining rows of the table define
dissimilarity using the differences between minimum enclosing cylinder diameters and difference between
volumes for visual hulls and VEMHs.

The table indicates that, unlike the proposed batch matching method, none of the other methods is perfectly
consistent. Consistency is a necessary but not sufficient condition for correct matching. If A is similar to B,
and A is similar to C, then B is likely to be similar to A even if the measure of similarity is inaccurate. For this
reason, the first column shows consistency values of over 60% for relatively poor approaches to matching,
such as choosing the case in which the difference between minimum cylinder diameters of the visual hull is
a minimum. (A computer simulation in which 15 runs of 494 random measurement values were drawn from
a uniform distribution, and minimum dissimilarity was used for matching, resulted in 62.5% of triplets being
consistent.)

Table 10.2 shows the percentage of cases that are correctly matched for the various methods. These are
computed on the assumption that the proposed batch matching method produces correct results. The table
indicates that matching based on a single shape property performs poorly, with VEMH-based estimates
outperforming visual hull-based estimates. Note that it is possible to have a greater percentage of correct
matches than consistent triplets: the 105× 494 = 51870 matched silhouette set pairs do not correspond
directly to the 455×494 = 224770 triplets.
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Matching
Method

Minimum
Dissimilarity

Square
Assignment

caliper signature 96.6% 99.4%
caliper, three principal 79.1% 87.7%

VH min cylinder diameter 3.6% 3.2%
VEMH min cylinder diameter 5.7% 5.3%

VH nonconvex volume 6.5% 6.0%
VH convex volume 6.8% 6.4%

VEMH convex volume 7.8% 7.3%

Table 10.2: Percentage correct matches as classified by the ET-based batch matching.

10.3 Silhouette-Based Sieve Emulation

This section investigates sieve emulation using the minimum enclosing cylinder of a 3D approximation of
the stone. The same silhouette sets that are used for batch matching are used to approximate 3D shape.

A analogous approach is used by Fernlund et al. [43] who provide a method for emulating square-aperture
sieves. They compute the minimum enclosing square from all available silhouettes of each stone. This is
used to approximate the smallest infinite-length prism with a square cross section that encloses the stone.

10.3.1 Computing the Minimum Enclosing Cylinder

The minimum enclosing cylinder of a 3D point set is the smallest diameter cylinder of infinite length that
completely encloses the points. Various methods for estimating the minimum cylinder have been developed
in the field of computational geometry, but implementing these methods is non-trivial [24,116]. The method
proposed here instead uses a conjugate-gradient minimisation algorithm to minimise the cylinder radius
from many starting points corresponding to different directions. An efficient minimum enclosing circle
algorithm [135] is used to compute the minimum cylinder radius for each direction, by projecting all points
onto a plane that is perpendicular to the direction of the cylinder axis. The derivative of the cost function is
required by the conjugate-gradient minimisation algorithm. This was calculated using an azimuth-elevation

representation for directions. To computed the partial derivatives, only the support points of the circle on
the plane need be considered. Since a circle is supported by either two or three points (barring cases in
which an infinitesimal perturbation of the points changes the number of support points), both cases need to
be formulated. The Matlab Symbolic Toolbox was used to compute a solution, which was verified using a
forward difference approximation. (The resulting C code for the derivative computation is tens of thousands
of lines long.) One hemisphere of a subdivided icosahedron is used to create direction samples. Some
computer simulations were carried out to determine a set of parameters (number of direction starting points,
number of descent iterations, number of optimisations from n best starting points) with desirable speed-
accuracy tradeoff characteristics.
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10.3.2 Experimental Results

Minimum enclosing cylinders were computed from the 15 runs of 494 silhouette sets using the visual hull
and the VEMH to approximate the stone shape. The minimum cylinder was expected to provide a reasonable
estimate of the minimum sieve aperture that the corresponding stone can pass through. This provides a means
for predicting the sieve bin that the stone would land in from its silhouette set. The minimum cylinder is
used as an approximate means for predicting sieve bins; certain stones (e.g. banana-shaped stones) may pass
through sieve diameters that are smaller than their minimum cylinder diameter. A similar observation is made
by Rao [109] also in the context of silhouette-based particle sizing: “[T]here is a chance that the particle can

weave, wiggle and make its way through. . . under the vigorous sieve shaking process. . . ” Although Rao
makes use of square-aperture sieves, the observation is equally valid for the circular-aperture sieves used
here.

The minimum enclosing cylinder diameters were used to classify each silhouette set into one of five bins
using the sieve aperture diameters as bin boundaries. The proportions of cases in each bin over all 15 runs is
given in Table 10.3. These values give an indication of the extent to which the silhouette-based methods can
be used to emulate sieving.

Bin No. 1 2 3 4 5
Sieving 14.1% 32.6% 19.1% 16.9% 17.2%

Min Cylinder VH 7.5% 31.8% 13.3% 25.4% 21.9%
Min Cylinder VEMH 10.6% 32.5% 15.1% 22.7% 19.2%

Table 10.3: Mean proportion of cases in each of the five bins

Histograms for the sieving and silhouette-based emulations are shown in Figure 10.1. The histograms give

an indication of the extent to which the silhouette-based methods can emulate the sieving process, as well as
an indication of the repeatability of the different sizing methods from run to run.

To investigate the extent to which the minimum cylinder diameter of a stone is a good estimate of the smallest
sieve aperture that the stone can pass through, 90-view visual hulls were formed for each stone by merging
silhouette sets (as described in Chapter 6). The minimum cylinders of the 90-view visual hulls are assumed
to be good estimates of the minimum cylinders of the corresponding stones. Each stone’s minimum sieve bin
over the 15 runs was used as an estimate of the smallest of the five bins that the stone could land in, i.e., it
was assumed that if the stone could pass through a sieve aperture, then it did pass through on at least one of
the 15 runs. Figure 10.2 shows histograms of the minimum cylinder diameters for stones corresponding to
each of the five bins. Vertical lines indicate the locations of the four bin boundary aperture diameters. Since
the minimum cylinder diameter cannot be smaller than the smallest circular aperture through which a stone
can pass, the histograms are all expected to lie to the right of the lower bin boundary. Figure 10.2 shows that
this is indeed the case: the histograms lie to the right of the vertical lines that represent the sieve aperture
diameters. This means that all stones passed through all apertures wider than their minimum cylinders on at
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./figures/sieve/SieveHist.eps

(a)

./figures/sieve/VhHist.eps

(b)

./figures/sieve/VemhHist.eps

(c)

./figures/sieve/AllHist.eps

(d)

Figure 10.1: Histograms for (a) sieving, (b) minimum cylinder of the visual hull, (c) minimum cylinder of the VEMH, and (d) mean
bin counts for 15 runs of the three sizing methods. Each run is represented by a different colour bar for histograms (a)–(c).
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./figures/sieve/histbin/minBin1.eps

(a) Bin 1

./figures/sieve/histbin/minBin2.eps

(b) Bin 2

./figures/sieve/histbin/minBin3.eps

(c) Bin 3

./figures/sieve/histbin/minBin4.eps

(d) Bin 4

./figures/sieve/histbin/minBin5.eps

(e) Bin 5

Figure 10.2: Histograms of minimum enclosing cylinder diameters for 90-view visual hulls of garnets whose minimum sieve bin is
(a) Bin 1, (b) Bin 2, (c) Bin 3, (d) Bin 4, (e) Bin 5. Vertical lines indicate the sieve aperture diameters.
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least one of the 15 runs. Parts of the histograms that overlap the upper bin boundaries correspond to cases in
which the stones have passed through an aperture smaller than their minimum cylinder. The figure indicates
that there are cases of stones passing through apertures up to 10% smaller than the minimum enclosing
cylinder. Note that a stone that passes through an aperture 10% smaller than its minimum enclosing cylinder
may pass through an aperture even smaller than this. This means that the ratio of minimum cylinder diameter
to smallest possible sieve aperture diameter (i.e., considering sieves of any diameter rather than the four used
in this experiment) is likely to be larger than 1/(1-10%).

Figure 10.3 illustrates the fives stones whose minimum sieve bin is smaller than the minimum cylinder
diameter by the largest amount. These stones must exhibit some degree of concavity, since convex stones

./figures/sieve/Stone373.eps
./figures/sieve/Stone22.eps

./figures/sieve/Stone97.eps

./figures/sieve/Stone463.eps./figures/sieve/Stone310.eps

Figure 10.3: Refined visual hull models of stones whose minimum sieve bin is smaller than the minimum cylinder diameter by the
largest amount.

cannot pass through a sieve aperture of smaller diameter than the minimum enclosing cylinder. It is visually
apparent that the concavities on these stones allow the stone to pass through a sieve aperture smaller than its
minimum enclosing cylinder.

No attempt was made to improve the estimate of the smallest sieve aperture through which a stone can pass
by accounting for possible changes in the direction of motion as the stone passes through a sieve aperture.
However, it is interesting to note that for a convex-shaped aperture (such as the circular or square apertures
used in practice), the line hull of any shape that can pass through the aperture (with possible changing
direction of motion) can pass through the aperture too. This is because synclastic concavities (such as a
dimple in a golf ball) do not affect whether a shape can pass though a convex-shaped aperture. It is therefore
possible, in principle, to determine whether or not a 3D solid can pass through a convex-shaped aperture, by

considering only its silhouettes from all viewpoints.

10.4 Comparing Histogram Repeatability

Particle shape analysts have historically made use of histograms, which are the natural output of sieving to
quantify the size characteristics of a batch of particles. It has been argued that particle volume measurements
are often preferable to sieve size measurements for the purpose of characterising particle size [133]. To
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switch from sieving to silhouette-based volume estimates for characterizing size, particle shape analysts
require that histograms of volume estimates are at least as repeatable from run to run as histograms derived
from sieving.

This section considers how the problem of comparing histogram repeatability can be meaningfully framed,
and then provides the results of an experiment that indicates that both silhouette-based sieve emulations and
volume estimates provide more repeatable histograms than the sieving runs carried out for the data set of 494
garnets.

10.4.1 Method for Comparing Histogram Repeatability

Summing Bin Count Variances: ΣVAR

The variation of histogram bin counts from run to run provides a means for computing repeatability. For
a perfectly repeatable system, the bin counts will not vary from run to run. The repeatability of two mea-
surement systems can be compared using the sum of bin count variances over multiple runs of histograms
produced by the two systems using the same sample of stones. The sum of bin count variances, ΣVAR, for r

histograms produced by a measurement system with n bins is given by

ΣVAR =
n

∑
j=1

VAR(b j), (10.1)

where b j is a vector of length r containing the counts of the jth bin, and VAR gives sample variance. Lower
ΣVAR indicates greater repeatability.

Individual Stone Contributions

If ΣVAR is to be determined by binning individual measurements, then different combinations of histograms
are possible. For instance, the first histogram may use the first measurement of the first stone and the
first measurement of the second stone, or it may use the second measurement of the first stone and the first
measurement of the second stone. All possible combinations are equally valid, since each stone measurement
is made independently of all others. The variation on the ΣVAR statistic due to the specific combination of
measurements used to form the histograms can be reduced without introducing bias by summing the bin
variances for the measurements corresponding to each stone individually.

For n measurements of a stone, the contribution of a bin to the ΣVAR statistic is

bin variance contribution =
kn− k2

n(n−1)
, (10.2)
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where k is the number of times the measurement falls into the bin. The bin variances for all bins and all
stones must be added to form the ΣVAR statistic.

Naive Bin Boundary Specification

To compare the repeatability of histograms formed from silhouette-based estimates of properties such as
volume with sieve histograms, the numbers of bins must be equal, and the probability of assigning a case

to corresponding bins must be the same. (If this were not the case then bin boundaries could be chosen to
create arbitrarily low ΣVAR values.)

In order to determine the bin boundaries for the silhouette-based estimates (for which the individual measure-
ments are available), the total proportion of measurements in each of the sieve classes must be calculated.
The bin boundaries must be positioned so that the same proportion of the total measurements are classi-
fied into the corresponding classes. It is not, however, a straightforward matter of ensuring that the same
proportion of measurements fall into each class.

Consider Figure 10.4. Each of four stones, represented by the +, ×, ? and ◦ symbols, has been measured

./figures/sieve/biasedClasses.eps

Figure 10.4: Class boundaries cannot be determined using the stone whose measurements are to be classified with the boundaries.

seven times. If the histograms with which the measurement system is to be compared have class probabilities
of 5/28, 6/28, 9/28 and 8/28, then the class boundaries shown as vertical lines in the figure would divide the
measurements so that the proportions correspond to the other measurement system. This method introduces
a bias, since no matter how tightly the measurements from each stone cluster, measurements will be assigned
to different bins resulting in an apparently poor repeatability statistic for a repeatable system.

Leave-One-Out Bin Boundary Specification

To classify measurements without introducing this bias, a leave-one-out approach is used. The measurements
corresponding to each stone are classified individually, using the measurements of the remaining stones. The

procedure is illustrated with an example. Consider an experiment in which five stones are each measured
eight times using a particular device. If the device is to be compared with a system that outputs histograms
with bin probabilities of 25%, 45% and 30% for bins #1, #2 and #3 respectively, then measurements can be
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./figures/sieve/bindefinition.eps

Figure 10.5: An example of classifying measurements into bins based on the measurements of the remaining stones and the mean
histogram of the of the other measurement system.

classified according to the bin boundaries as determined in Figure 10.5. In this example, the eight measure-
ments for a particular stone are represented by the open circles shown in Figure 10.5. The bin boundaries for
determining which bin each of these eight measurements falls into are determined from the sets of repeated
measurements for the four remaining stones. The mean of the eight measurements for each of the four stones
is computed (shown as black dots) and define the cumulative probability distribution. The bin boundaries
are then determined from this cumulative distribution and the eight measurements for the single stone being
binned are classified into the corresponding bins. Five of the measurements are binned into Bin #2 and three
of the measurements are binned into Bin #3. The histogram bin counts for each run (or measurement) are

shown in Table 10.4. The variance for each bin can be calculated using Equation 10.2. This particular stone
contributes a total of 30/56 to the ΣVAR statistic.

Bin #1 Bin #2 Bin #3
Run #1 0 1 0
Run #2 0 0 1
Run #3 0 1 0
Run #4 0 0 1
Run #5 0 1 0
Run #6 0 1 0
Run #7 0 1 0
Run #8 0 0 1
VAR 0 15/56 15/56

Table 10.4: Histogram bin counts for single stone and corresponding contributions to ΣVAR statistic

Note that for n stones, extrapolation is required to define bin boundaries for cumulative bin probabilities
below 1/n and above (n−1)/n. For a large number of stones, this situation is unlikely to occur. For cases
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in which the situation does occur, the contribution of the small number of measurements that do fall outside
the range can be discounted and the ΣVAR weighted accordingly.

10.4.2 Experimental Results

The ΣVAR statistic can be estimated more accurately from individual measurements than directly from his-
tograms. However, this is under the assumption that the individual measurements are independent of the run.
The assumption may not be valid for sieving, with individual measurements being affected by the sieving
vigour for each run. Nevertheless, the ΣVAR statistic provides a useful means for comparing silhouette-based
measurements with the inherently quantised sieving measurements in the sense of individual measurement
repeatability. In addition, if a silhouette-based method can be shown to be more repeatable in the sense of
individual measurement variability, then it must also be more repeatable in the sense of direct histogram
variability, since the run-dependent influence cannot decrease variability.

./figures/sieve/SigmaVarHistRunsAll.eps

Figure 10.6: Histograms of ΣVAR values computed directly from sieve histograms with 1000 trials of random permutations of the
15 bin values for each stone. The ΣVAR value of 393.0 computed from the original data is indicated with a vertical line.

Figure 10.6 illustrates the effect of randomly permuting the 15 bin values for each run on the computed
ΣVAR statistic. This removes the run-dependent variability component. Each of the 1000 trials produced a
ΣVAR value much lower than that computed from the original permutation, providing strong evidence that
there is a large degree of run-dependence on the bin values.

To test the validity of the implementation of the method for estimating ΣVAR from individual measurements,
a computer simulation using synthetic data was set up. Sieve bins were computed for 15 runs of 494 stones,
using proportions of bin occurrences for the real data to derive the distributions from which random values

were drawn. The experiment was repeated 250000 times, with the ΣVAR statistic being computed directly
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from histograms and also from individual measurements for each trial. The mean and standard deviations of
these values are given in the first and second rows of Table 10.5. Note that the mean values are similar for the

Method Runs Trials Mean STD
ΣVAR from histograms 15 250000 57.426 12.435

ΣVAR individual measurements 15 250000 57.385 1.639
ΣVAR from histograms 100000 10 57.472 0.140

ΣVAR individual measurements 100000 10 57.389 0.017

Table 10.5: Results of a computer simulation in which the ΣVAR statistic was computed directly from histograms and from indi-
vidual measurements for 494 cases. Values were generated from probabilities determined by the proportions of bin occurrences for
each of the 494 garnets over the 15 runs of sieving.

two methods, but the values computed from the histogram show a much larger spread than those computed
from the individual measurements. This indicates that a better estimate of ΣVAR is obtained using individual
measurements. To ensure that the correct quantity is being measured, the ΣVAR statistic was computed for
a large number of runs. The results of 10 trials of 100000 runs are given in the third and fourth rows of the
tables The results indicate that estimating ΣVAR from a small number of runs (15 runs) does not introduce
substantial bias with either the histogram or individual measurement methods.

Comparing the silhouette-based measurements with sieving measurements requires the sieving measure-
ments to be binned. Bin probabilities must be the same as the sieve bin probabilities for a meaningful
comparison.

A computer simulation was carried out to test the validity of the implementation. A normal distribution was
created from which 494 sample values were drawn. Normally distributed noise of fixed standard deviation
was then added to create 15 noisy measurements for each sample value. The samples were then binned into
five bins using four bin boundaries. These data represent the sieve measurements. The ΣVAR statistic was
computed from these measurements using the individual measurement method. A new set of measurements
was then drawn from the same distributions. These represent silhouette-based measurements with the same
inherent repeatability as the simulated sieve measurements. The ΣVAR statistic was computed for these mea-
surements using the simulated sieve data to assign the data to bins using the leave-one-out approach. Note
that the bin boundaries are not used, and in general will be meaningless when comparing the repeatability of
two measurement systems that may be measuring different stone properties (e.g., mass, volume, hardness,
electrical conductivity). In addition to the data generated from the same distributions, data were also gen-
erated using measurement noise distributions with 1.1 and 0.9 times the original standard deviations. The
ΣVAR statistic should indicate that these measurements are less repeatable and more repeatable respectively.
Mean and standard deviations of ΣVAR values for 500 trials are shown in Table 10.6. The results indicate that
the leave-one-out method produces a ΣVAR statistic that is in close agreement with the directly computed
ΣVAR statistic from an equally repeatable measurement system. The ΣVAR values also correctly reflect the

lower and higher repeatability of the simulations of the two other measurement systems with different noise
characteristics.
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Data Mean STD
Original Binned Data 59.92 3.88

Data with same measurement STD 59.59 4.34
Data with 1.1× measurement STD 65.44 4.62
Data with 0.9× measurement STD 53.93 4.02

Table 10.6: Results of a computer simulation in which the ΣVAR statistic was computed by binning individual measurements using
the leave-one-out approach. The mean and standard deviations for 500 trials are shown. Size and noise variation values were
based on minimum cylinder diameter values computed from the real data set. The four sieve aperture diameters were used as bin
boundaries.

ΣVAR statistics were computed for the sieving data and various silhouette-based estimates of shape proper-
ties. Results are presented in Table 10.7. The 95% confidence intervals were computed using the bootstrap

ΣVAR
95% Conf. Int.

Measurement lower upper
bound bound

sieving 61.5 53.9 69.6
VH min cylinder diameter 64.0 53.7 77.5

VEMH min cylinder diameter 35.3 27.1 46.4
VH nonconvex volume 30.4 25.6 43.6

VH convex volume 29.8 24.8 41.5
VEMH convex volume 24.1 20.0 36.5

Table 10.7: ΣVAR statistics for sieving and various shape features measured from silhouette sets.

percentile method [36] with 2000 bootstrap samples per case. Note that the sieving ΣVAR values that are
computed from individual measurements are substantially lower than the values computed directly from his-
tograms (see Figure 10.6 in which the mean value of the histograms will tend towards the values in Table 10.7
as the number of trials is increased).

Although the sieving ΣVAR values which are computed from individual measurements would provide an
underestimate of the actual sum of bin variances one would obtain over repeated sieve runs (since the run-
dependent component of variability is not considered), they provide a useful means of comparing the re-
peatability of the inherently quantised sieve measurements with shape features derived from silhouette sets
on an individual measurement basis.

The ΣVAR values indicate that visual hull volume is more repeatable than sieving in terms of individual mea-
surements. Since visual hull repeatability is not run-dependent, while sieve repeatability is run-dependent,
visual hull volume histograms are also expected to be more repeatable than sieving histograms.

The table confirms observations of measurement repeatability implied by matching accuracy (see Table 10.2):
(1) VEMH-based measurements tend to be more repeatable than visual hull-based measurements, (2) vol-
ume measurements tend to be more repeatable than minimum cylinder measurements.

198



Only the minimum enclosing cylinder of the visual hull appears to be less repeatable than the sieve-based
measurements on an individual stone basis. This suggests that the minimum enclosing cylinder of the VEMH
(rather than the visual hull) should be used to emulate sieving.

The contribution that each stone makes to the ΣVAR statistic can be used as a measure of how likely the
stone is to land in different bins on different runs. Presumably, the shape of a stone plays an important role
in determining the likelihood that a stone will have a tendency to fall into different bins on different runs.
Figure 10.7 illustrates the five stones that produced the largest contribution to the sieving ΣVAR statistic.
The 3D shapes do not seem to provide any obvious clues as to why these stones have a tendency to fall into

./figures/sieve/Stone198.eps./figures/sieve/Stone64.eps
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Figure 10.7: Refined visual hull models of stones that tend to fall in different bins as measured by contribution to ΣVAR.

different bins. However, the stones do exhibit some protrusions which may cause the stone to become stuck
in an aperture in certain orientations.

Also note that a stone whose minimum sieve aperture is just larger than an actual sieve aperture will have
less of a tendency of fall into different bins on different runs (as it will easily pass through the bin’s upper

boundary but cannot pass through the lower boundary). The actual bin boundaries also therefore play a role
in determining the ΣVAR contribution for a stone.

10.5 Summary

An experiment in which 494 garnets were sieved 15 times has been presented. The experiment makes use of
the main shape, calibration, and recognition methods developed in this thesis to compare sieve sizing with
silhouette-based estimates of shape properties.

The proposed batch matching method (see Chapter 9) has been demonstrated to produce perfectly consistent
matches over all run pairs. This is in contrast to other simpler methods that all exhibit inconsistency, thereby
providing justification for the additional complexity of the proposed batch matching method. Matching a
pair of runs of 494 stones takes approximately three seconds (in addition to the preprocessing that can be
carried out as the stones are passed through the system). The running time is therefore, for practical purposes,
insignificant.
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The minimum enclosing cylinder estimator has been used to emulate sieve measurements. Histograms of
sieve measurements were compared with those of silhouette-based sieve emulators. Refined visual hull
models formed from 90 views (15 runs of six-view sets) demonstrated the limitations of using minimum
cylinders to predict sieve bins. (Note that batch matching provides an efficient means of obtaining the 90-
view visual hulls: without batch matching, each stone would have to be individually passed through the
camera setup 15 times; batch matching allows the stones to be passed through in batches, substantially
speeding up data capture.) Cases were found in which the minimum cylinder diameter of a 90-view visual
hull was up to 10% larger than the sieve aperture of the stone’s minimum bin. However, the minimum
cylinder diameter was larger than the minimum bin’s lower boundary diameter in all cases.

The sum of bin count variances (ΣVAR) has been introduced as a means for comparing the repeatability
of silhouette-based shape properties with sieving, which produces histograms as output. Volume estimates

based on visual hull volume, and sieve emulation based on the minimum enclosing cylinder of the VEMH
have been shown to be more repeatable than sieving for the data captured using a batch of 494 garnets.
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Chapter 11

Conclusion

11.1 Summary of Contributions

This thesis has extended the capabilities of multi-view silhouette based particle analysis by incorporating sil-
houette consistency constraints. Three problems have been addressed: (1) camera calibration, (2) estimating

shape, and (3) recognising individual stones.

To provide practical tools to particle shape analysts, running time efficiency has been considered: com-
putations which require hours or days to complete are impractical. ET error and the VEMH have played
an important role in the design of efficient methods throughout this thesis. ET error is an efficiently com-
putable measure of silhouette consistency, and a VEMH is an efficiently computable estimate of the shape
that produced a silhouette set.

11.1.1 Calibration

The configuration and calibration of two image capture setups have been addressed. The first, the two-mirror
setup, is a low cost setup that can be easily created using readily available equipment. The second, the six-
camera setup, is a high throughput system that can be used for large batches of stones in either an industrial
or a laboratory setting.

The Two-Mirror Setup

The two-mirror setup is used to capture five silhouette views of an object in a single image. It has been shown
that the setup can be calibrated using only constraints imposed by silhouette bitangents. This approach
therefore adds to the array of silhouette-based self-calibration methods described in the computer vision
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literature. These approaches include setups that impose constraints based on known circular motion [93] and
prior knowledge of camera orientation [102].

Calibration involves determining the camera pose and internal parameters as well as mirror poses; there is
therefore no need for accurate positioning of any apparatus. The two-mirror setup provides a convenient
approach to capturing multiple calibrated silhouette views of stones for shape-from-silhouette reconstruction
without using specialised equipment. Its use is not, however, limited to stones: it can be used for shape
reconstruction of arbitrary objects. Experiments have demonstrated that calibration is sufficiently accurate
that silhouette noise is a greater contribution to inconsistency across silhouettes than calibration parameter
errors.

The Six-Camera Setup

Two different heuristics were considered for determining the camera configuration for the six-camera setup:
one requires maximising the distribution of frontier points on a sphere, and the other minimises the isolation
of the direction that is furthest from any viewing direction. Both heuristics are designed to provide good
results over a range of silhouette-based applications (estimating shape, volume, and matching), and both
indicate that six cameras should be configured so that viewing directions are perpendicular to the parallel
face pairs of a regular dodecahedron. This is therefore the configuration that is used.

The six-camera setup is calibrated using several runs of silhouette sets of a ball. Initial parameter estimates

are computed by generating approximate point correspondences using the centres of the ball projections.
The method is based on the work of Tomasi and Kanade [129]. The calibration parameters are then refined
by minimising ET error, and scale is enforced using the known size of the ball.

Merging Silhouette Sets

A method for aligning silhouette sets in a common reference frame by minimising ET error has been intro-
duced. This is external calibration: the poses of the cameras must be specified, but the internal parameters
are known. The method allows silhouette sets containing a large number of views of a stone to be constructed
from setups that produce a small number of views (such as the two-mirror setup and the six-camera setup).
A larger number of silhouettes provides more constraints on stone shape, which provides the potential for

more accurate estimates of shape properties.

11.1.2 Recognition

The main recognition goal of this thesis is efficient batch matching: an algorithm to compute the one to
one correspondences between two unordered batches of silhouette sets of the same batch of stones. Batch
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matching is useful for tasks such as reconciling class labels assigned to each stone using batch classification
methods such as sieving (in which stones are classified together rather than individually). The design of a
batch matching algorithm was split into three components: (1) alignment-based matching, (2) faster, but
less accurate signature-based matching, and (3) a framework to combine the accuracy of alignment-based
matching with the speed of signature-based matching to create an efficient batch matching algorithm.

Alignment-Based Matching

Alignment-based matching simply applies ET-based pose optimisation to a pair of silhouettes. If a suffi-
ciently low error is achieved, then the pair is classified as a match, otherwise it is classified as a mismatch.
A formulation of ET error based on an orthographic projection model was introduced to improve computa-
tional efficiency. The method was applied to the 2-mirror 5-view gravel data set and the 6-camera garnet data
set. All mismatch pairs considered were found to produce substantially larger ET errors after alignment than
any of the match pairs considered. Various CIP-based error formulations were found to produce no practical
improvement on matching accuracy when tested on downsampled image data. Used alone, alignment-based
matching provides a means for verification: a silhouette set of a stone can be compared with a silhouette set
on record to confirm that the two silhouette sets correspond to the same stone.

Signature-Based Matching

Signature-based matching uses signatures that approximate the CDF of a stone’s caliper diameter distribu-
tion. The EMD between signature pairs is used to quantify their dissimilarity. The EMD between signatures
can be computed in O(m) time complexity for m-element signatures (typically m = 10), and in practice takes
less than one microsecond to compute. This makes it practical to compute dissimilarity values between all n2

pairings across two runs of n stones (for realistic values of n; a batch of stones will contain several thousand
stones at the most). Although signature-based matching was developed primarily as a component of batch
matching, it can also be used for identification. To identify a query silhouette set from a database of stored
silhouette sets, the query-database pairings can be rapidly ranked in order of dissimilarity specified by EMD
between signatures. The slower alignment-based matching is then applied to pairs in order of dissimilarity.
Tests applied to the 2-mirror 5-view gravel data set result in the correct match being ranked first by EMD in
98% of cases, and the correct match is always within the top five.

Batch Matching

A simple probabilistic framework was used for batch matching. Each silhouette set pair across two runs is
assigned a likelihood ratio (indicating the likelihood of being a match). The pairs are pushed onto a priority
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queue that is prioritised by likelihood ratio. Alignment-based matching is used to make a hard (i.e., non-
probabilistic) decision for each pair and starting point considered: match or unknown. Once all matches
are found, the algorithm terminates. Efficiency is achieved by reducing the likelihood ratio using Bayes’s
rule and pushing the pair back into the priority queue after an unsuccessful optimisation. This is a greedy
algorithm: pose optimisation is always applied to the pair and starting point that is most likely to result
in successful alignment. A data set of two runs of six-view silhouette sets of uncut gemstones is correctly
matched up in approximately 68 seconds on a 3.2 GHz Pentium 4 machine. Of this, 50 seconds is spent on
preprocessing that can be computed online as the stones pass through the six-camera setup.

11.1.3 Shape

The VEMH has been introduced as an alternative to the visual hull for estimating the shape of the convex
hull of a stone from its silhouettes. The VEMH can be used to estimate the caliper diameter of a stone in a
given direction. This has been used for recognising stones, but is also of use to particle shape analysts who
use estimates of the short, intermediate, and long diameters for a broad range of applications.

The accuracy with which commonly-used shape properties (long, intermediate, short diameters and volume)

can be estimated from silhouette sets has been quantified for both image capture setups considered. Merging
silhouette sets to create a single large silhouette set of a stone from silhouette sets containing a smaller
number of silhouettes has been shown to improve the accuracy in estimating these shape properties.

The extent to which the minimum enclosing cylinder can be used to emulate sieving has been investigated in
an experiment which makes use of the calibration, recognition, and shape methods developed in this thesis.
The sieve bin associated with each of 494 garnets across 15 runs of sieving was determined using batch
matching. The bins associated with most stones are consistent with the minimum cylinder diameter, limiting
the smallest sieve aperture through which the stone can pass. A few stones landed in bins bounded by circular
apertures with diameters smaller than the minimum cylinder, indicating that these stones may have changed
their direction of motion as they passed through the aperture. Both visual hull-based volume estimates and
silhouette-based sieve emulation were found to produce more repeatable histograms than sieving for the data
set of 494 garnets.

11.2 Future Work

There are many ways in which the work described in this thesis can be extended. Some ideas follow.

This work has been limited to considering silhouette images of stones. Front-lit images from colour cameras
will provide information about the colour and surface texture of stones. This information may enable esti-
mation of particle properties that are not available from silhouettes. Stereo vision techniques may be able to
reconstruct concavities that cannot be captured with silhouettes.
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There has recently been interest in the discrete element modelling community in using silhouette-based
methods for model validation [107]. Li et al. [79] use computer simulations with discrete element modelling.
They are interesting in the efficiency of the sieving process as a function of sieving time and intensity. The
methods presented in this thesis may be useful for validating this type of computer simulation with real
experiments. For instance, the results of a computer simulation of sieving (using 3D shape models computed
from a real batch of stones) can be compared with the results that are achieved in practice on a stone by stone
basis.

Some initial work indicates that ET-based alignment of silhouette sets may be adapted to align silhouettes of
a stone before and after the stone is chipped. Figure 11.1 shows an example.

./figures/conclusion/RedUnchipped.eps./figures/conclusion/ChippedUnchipped.eps./figures/conclusion/YellowChipped.eps

./figures/conclusion/broken.eps

Figure 11.1: A refined visual hull model of a stone formed by merging five 6-view runs is shown in red. A portion of the stone
was subsequently chipped off. A refined visual hull model of the chipped stone formed by merging five 6-view runs is shown in
yellow. The original stone is also overlaid on the broken version to aid visualisation of the chipped piece. Silhouettes of the stone
are shown in black with the CIPs formed from all silhouettes overlaid in grey. Each row of silhouettes corresponds to a camera view,
and each column, a run. The stone was chipped between runs 5 and 6. CIPs therefore do not cover portions of the original stone
corresponding to the chipped piece: these portions are black.
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To specify all silhouettes in a common reference frame, pose optimisation using a modified version of ET
error that accounts for the chipping was used. (The modification assumes stone projections can become
smaller, but not larger between runs 5 and 6.) This provides the potential to analyse the shape and location of
chipping during certain industrial processes, and to recognise stones even if they are chipped. Understanding
the nature of breakage is important when dealing with high value gemstones. By identifying the shape and
location of chips broken from real stones, it may be possible to validate computer simulations that attempt
to predict the breakage occurrences. Since constraints on relative pose are weaker after breakage, it may be
necessary to use more silhouettes or to incorporate CIP constraints in addition to ET constraints.

Gemstones are manually classified into different shape classes for valuation purposes. It is possible that some
of the recognition methods developed in this thesis could be extended to automate the shape classification of
gemstones.
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Appendix A

Threshold-Based Subpixel Segmentation

The methods developed in this thesis use as input polygonal boundaries that separate the foreground and
background regions in images. This appendix describes the silhouette boundary extraction algorithm used
to segment the images captured by the six-camera setup described in Chapter 5. Since images are captured
under controlled lighting conditions, a simple threshold-based segmentation effectively separates foreground
from background.

An empty background image is stored for each of the six cameras so that background subtraction can be ap-
plied. This reduces the effect of any intensity variation of the background over an image. Otsu’s method [105]
is applied to the difference images to determine thresholds. The method selects a threshold to minimise the
intra-class variance of pixel intensity values for background and foreground. In practice, the extracted bound-

aries are found to be insensitive to the precise threshold value since backlights ensure that background pixels
are substantially brighter than foreground pixels.

The algorithm achieves efficiency by using a strategy that does not visit each pixel. This can be done because
the boundary of only one connected region is sought per image (i.e., the prior knowledge that each image
contains exactly one stone silhouette is used). Only visited pixels are classified as foreground or background.
This is done by subtracting the pixel intensity value of the background image from the pixel intensity value
of the foreground image and comparing the result with the fixed threshold value. This allows segmentation
to be carried out without visiting each pixel. After a pixel-resolution boundary is extracted, the boundary is
traversed once more to compute a subpixel resolution boundary using linear interpolation of pixel intensity
values. The resultant boundary is equivalent to the marching squares boundary. (Marching squares is the 2D
analogue of marching cubes [84].)

Broadly, the algorithm proceeds as follows:

1. Find a pixel inside the silhouette.

2. Walk downwards to find the boundary of the silhouette.
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3. Traverse the silhouette to determine its pixel resolution boundary.

4. Traverse the silhouette again to determine its subpixel resolution boundary.

A.1 Finding a Starting Point

The first step of the algorithm is to find a pixel that is sufficiently dark (i.e., a foreground pixel). This is
carried out by considering grid point vertices at successively finer resolutions until a foreground pixel is
found. The first point is the image centre. This point belongs to the Level 1 Grid. The Level 2 Grid is formed
by points in the centres of the four rectangles defined by the image corners and the first vertex. There are
therefore four Level 2 vertices. Vertices belonging to further grid levels are defined in a similar manner using
the rectangle centres of the grid’s predecessor. Figure A.1 illustrates the point locations for grids up to Level
5. There are 22(n−1) point locations for a grid of level n.

The procedure of looking for a foreground pixel ensures that few pixels are visited. Figure A.2 shows an
example. In this case, ten grid points are considered before a sufficiently dark pixel is found.

Once a dark pixel has been found, the algorithm searches for a background pixel. This is done by moving
downwards one pixel at a time as can be seen in the example in Figure A.3.

A.2 Pixel-Resolution Boundary

Once a pair of foreground and background pixels has been found, their shared edge is used as the first edge
of the boundary polygon, and the leftmost vertex of this edge is used as the first vertex of the polygon (see
Figure A.3).

The polygon is then traversed by moving from pixel corner to pixel corner, keeping the silhouette to the left.
At each step the boundary can proceed either left, straight ahead, or right. This is determined by considering
the two pixels ahead of the current polygon edge (the ahead left pixel and the ahead right pixel). The rules

for determining the direction of the next edge from the current edge vertex are given in Table A.1. The rules
imply that the foreground is 4-connected and the background is 8-connected. However, in practice, there are
rarely images for which a 4-connected foreground differs from an 8-connected foreground.

ahead left pixel ahead right pixel direction
foreground foreground right
foreground background straight ahead
background foreground left
background background left

Table A.1: Determining the direction of the next edge from the ahead left pixel and the ahead right pixel.
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./figures/segmentation/subdiv.eps

Figure A.1: Example showing point locations considered when searching for a foreground pixel. The grid level number associated
with each point is shown next to each point.

./figures/segmentation/StartingPoint.eps

Figure A.2: A segmentation example. Grid points used to locate a foreground pixel are in blue with the level number shown. The
vertical path from the starting point to the boundary is in green, and the silhouette boundary is red.

./figures/segmentation/segdemoStone2Run3Cam2CloseupC.eps

Figure A.3: A closeup of part of Figure A.2. The vertical path from the foreground starting point to the boundary is shown with
green dots. The boundary is in red. A yellow circle indicates the start of the boundary, and a yellow line segment indicates the first
edge of the polygon representing the boundary.
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Upon return to the starting point, the pixel resolution boundary has been found.

A.3 Subpixel Boundary

Figure A.4 shows an example of a portion of a subpixel boundary. The original boundary (shown in green)
runs across pixel edges and is therefore limited to pixel resolution. To create a subpixel boundary, linear
interpolation based on pixel intensity values is used. For each edge, a pixel-length line segment is considered.
Each line segment runs from the centre of one of the pixels bounded by the edge to the centre of the other
pixel bounded by the edge. One pixel is a background pixel, and one is a foreground pixel. A vertex of the

subpixel boundary is generated along each line segment. The vertex is positioned at a distance p from the
centre of the foreground pixel using the following formula:

p =
iF − iT
iF − iB

, (A.1)

where iF is the intensity value of the foreground pixel, iB is the intensity value of the background pixel, and
iT is the threshold value.

./figures/segmentation/SubpixelBoundary2.eps

Figure A.4: An example of subpixel segmentation. The original pixel resolution boundary is shown in green. The subpixel boundary
is shown in red. Each vertex of the subpixel boundary lies on a pixel-length line segment associated with each edge of the original
boundary. These line segments (shown in blue) are perpendicular to and share centre points with the associated original edges.

The resultant subpixel boundary is the same as a marching squares boundary. The marching squares algo-
rithm considers pixel-sized squares centred at each pixel corner. The corners of the squares (which lie on
pixel centres) are classified as foreground or background based on the intensity threshold iT . The 24 = 16
possible classifications of the square determine how the boundary enters and exits the square, i.e., which
square sides the boundary crosses. The square sides are equivalent to the pixel-length line segments consid-
ered above.
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A.4 Experiments

To test the performance of subpixel segmentation, image downsampling was used. This was done because in-
tensity noise in the images is high, and at full resolution intensity noise dominates spatial quantisation noise.
Downsampling uses the mean intensity value of n× n groups of pixels to create a lower resolution image.
Averaging the intensity values has the effect of reducing intensity noise, but increasing spatial quantisation
noise.

./figures/segmentation/KingGarnetStone00001Run01Cam1Res64.eps

(a) 64×64 binning

./figures/segmentation/KingGarnetStone00001Run01Cam1Res32.eps

(b) 32×32 binning

./figures/segmentation/KingGarnetStone00001Run01Cam1Res16.eps

(c) 16×16 binning

./figures/segmentation/KingGarnetStone00001Run01Cam1Res8.eps

(d) 8×8 binning

Figure A.5: Subpixel segmentation of an image of a garnet with various levels of downsampling. The subpixel boundary is shown
in colour.

Figure A.5 shows examples of n×n pixel binning of a garnet image for various values of n.

Pixel binning was applied to 246 image sets of garnets captured with the six-camera setup. Bin dimensions
of 1× 1 (i.e., no binning) through to 20× 20 were used. Boundaries were then extracted using both pixel
resolution and subpixel boundary extraction methods (with fixed intensity thresholds determined by the
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calibration procedure). At full resolution, the C++ implementation of the subpixel boundary extraction takes
approximately 1.5 ms per image on a 3.2 GHz Pentium 4 machine.

After extraction, the boundaries were scaled up by a factor of n to facilitate direct comparison between
different degrees of downsampling, and so that unaltered computed calibration parameters could be used.
Figure A.6 shows a plot of the internal ET error for the silhouette sets at different resolution levels using
pixel resolution boundaries and using subpixel boundaries. The plot shows that with no downsampling

./figures/segmentation/PlotEtPixSubpixRaster.eps

Figure A.6: Plot of internal ET error versus n for n×n pixel binning of 246 silhouette sets of garnets.

(1× 1 binning), subpixel boundary extraction offers no greater accuracy than pixel resolution boundary
extraction. This is because intensity noise dominates spatial quantisation noise. With 2× 2 binning the
ET error decreases. This is because the averaging effect that reduces pixel intensity noise outweighs the
increased spatial quantisation noise. This suggests that, given the current lighting, it would be beneficial to
run the cameras of the current six-camera setup in 2×2 binning mode (the Dragonfly cameras used with the
current setup can be configured to run in this mode). This also indicates that there is scope for improvement
in boundary accuracy if the signal to noise ratio of the images is improved, by using brighter backlights for
instance.

The plot illustrates that subpixel boundary extraction produces significantly more accurate boundaries (in
terms of ET error) than pixel resolution boundaries when spatial quantisation errors are the major source of
error.
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Appendix B

An Analytical Expression for a Jacobian
Matrix

This appendix records the derivation of an analytical expression for the Jacobian matrix that is used for
ET-based pose optimisation with an orthographic imaging model (as described in Chapter 7).

The Jacobian matrix is used by the Levenberg-Marquardt method to create a local linear approximation to
the cost function

f(v) = e. (B.1)

In this case, v = (q1,q2,q3,q4,xt ,yt ,zt)T is a seven parameter vector representing a pose. The orientation
part of the pose is represented by a (possibly non-unit) quaternion (q1,q2,q3,q4). To determine the rotation,
the quaternion is unitised. The x-, y-, and z-components of the translational part of the pose is represented
by xt , yt and zt . The error vector e stores the individual residual values:

e = (∆x0A1B1,∆y0A1B1,∆x1A1B1,∆y1A1B1 . . .∆x0AmBn,∆y0AmBn,∆x1AmBn,∆y1AmBn)T . (B.2)

Each residual value is identified by subscripts. The first indicates to which of the two outer tangencies the
reprojection error corresponds (0 or 1). Subsequent subscripts indicate which image from Set A and which
image from Set B correspond to the residual value.
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The Jacobian matrix J is as follows:

J =




∂∆x0A1B1
∂q1

∂∆x0A1B1
∂q2

∂∆x0A1B1
∂q3

∂∆x0A1B1
∂q4

∂∆x0A1B1
∂xt

∂∆x0A1B1
∂yt

∂∆x0A1B1
∂zt

∂∆y0A1B1
∂q1

∂∆y0A1B1
∂q2

∂∆y0A1B1
∂q3

∂∆y0A1B1
∂q4

∂∆y0A1B1
∂xt

∂∆y0A1B1
∂yt

∂∆y0A1B1
∂zt

∂∆x1A1B1
∂q1

∂∆x1A1B1
∂q2

∂∆x1A1B1
∂q3

∂∆x1A1B1
∂q4

∂∆x1A1B1
∂xt

∂∆x1A1B1
∂yt

∂∆x1A1B1
∂zt

∂∆y1A1B1
∂q1

∂∆y1A1B1
∂q2

∂∆y1A1B1
∂q3

∂∆y1A1B1
∂q4

∂∆y1A1B1
∂xt

∂∆y1A1B1
∂yt

∂∆y1A1B1
∂zt

...
...

...
...

...
...

...
∂∆x0AmBn

∂q1

∂∆x0AmBn
∂q2

∂∆x0AmBn
∂q3

∂∆x0AmBn
∂q4

∂∆x0AmBn
∂xt

∂∆x0AmBn
∂yt

∂∆x0AmBn
∂zt

∂∆y0AmBn
∂q1

∂∆y0AmBn
∂q2

∂∆y0AmBn
∂q3

∂∆y0AmBn
∂q4

∂∆y0AmBn
∂xt

∂∆y0AmBn
∂yt

∂∆y0AmBn
∂zt

∂∆x1AmBn
∂q1

∂∆x1AmBn
∂q2

∂∆x1AmBn
∂q3

∂∆x1AmBn
∂q4

∂∆x1AmBn
∂xt

∂∆x1AmBn
∂yt

∂∆x1AmBn
∂zt

∂∆y1AmBn
∂q1

∂∆y1AmBn
∂q2

∂∆y1AmBn
∂q3

∂∆y1AmBn
∂q4

∂∆y1AmBn
∂xt

∂∆y1AmBn
∂yt

∂∆y1AmBn
∂zt




(B.3)

The Jacobian matrix J has as many rows as there are elements in e and as many columns as there are elements
in v. Since there are reprojection errors in the x- and y-directions for each of two outer tangencies, there are
2×2 = 4 reprojection errors for each silhouette pair. Note that the residual values are computed in only one
image of the pair. Since we are using an orthographic projection, the corresponding residuals computed in
the opposite image are identical.

If Set A contains m silhouettes and Set B contains n silhouettes, then there are mn pairings across sets. There

are thus 4mn reprojection errors corresponding to a pose estimate.

The partial derivatives that are the elements of J are computed using the chain rule. For example

∂∆x
∂q1

=
∂∆x
∂r11

∂r11

∂q1
+

∂∆x
∂r12

∂r12

∂q1
+

∂∆x
∂r13

∂r13

∂q1
+

∂∆x
∂tx

∂tx
∂q1

+
∂∆x
∂r21

∂r21

∂q1
+

∂∆x
∂r22

∂r22

∂q1
+

∂∆x
∂r23

∂r23

∂q1
+

∂∆x
∂ty

∂ty
∂q1

. (B.4)

The Matlab Symbolic Math Toolbox was used as an aid in computing the following partial derivatives:

∂∆x
∂r11

=
r23

2 p2x

r232 + r132 (B.5)
∂∆x
∂r12

=
r23

2 p2y

r232 + r132 (B.6)
∂∆x
∂tx

=
r23

2

r232 + r132 (B.7)

∂∆x
∂r13

=

(
p1y− r21 p2x− r22 p2y− ty

)
r23

r232 + r132

+2
r2

23r13
(

p1x− r11 p2x− r12 p2y− tx
)− r2

13r23
(

p1y− r21 p2x− r22 p2y− ty
)

(
r232 + r132

)2 (B.8)

∂∆x
∂r21

=− r13 p2x r23

r232 + r132 (B.9)
∂∆x
∂r22

=
r13 p2y r23

r232 + r132 (B.10)
∂∆x
∂ty

=− r13 r23

r232 + r132 (B.11)

214



∂∆x
∂r23
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r13

(
p1y− r21 p2x− r22 p2y− ty

)−2r23
(

p1x− r11 p2x− r12 p2y− tx
)

r232 + r132

+
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23
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23
(
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)

(
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)2 (B.12)
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r232 + r132 (B.14)
∂∆y
∂tx

=− r23 r13
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A candidate rigid transform from View 2 of Set B to View 1 of Set A is derived from its parameter vector v
and the poses of Views 1 and 2 with respect to the world reference frames of Sets A and B.

A 4×4 matrix representing a rigid transform is derived from the parameter vector v. The first four elements
of v represent a quaternion. The normalised (unit) quaternion q̂ = (qx,qy,qz,qw)T represents a rotation:




qx

qy

qz

qw




=
1√

q2
1 +q2

2 +q2
3 +q2

4




q1

q2

q3

q4




. (B.21)

A rotation matrix RB→A is formed from the unit quaternion:

RB→A =




1−2q2
y −2q2

z 2qxqy−2qzqw 2qxqz +2qyqw

2qxqy +2qzqw 1−2q2
x −2q2

z 2qyqz−2qxqw

2qxqz−2qyqw 2qyqz +2qxqw 1−2q2
x −2q2

y


 . (B.22)

A rigid transform MB→A that transforms Set B’s world reference frame to Set A’s world reference frame is
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formed from RB→A and the remaining elements of the parameter vector:

MB→A =

(
RB→A tB→A

0 1

)
, (B.23)

where tB→A = (xt ,yt ,zt)T.

The 4× 4 matrix MWA→C1 that represents the transform from Set A’s world reference frame to Camera 1’s

reference frame can be written as

MWA→C1 =




mA11 mA12 mA13 mA14

mA21 mA22 mA23 mA24

mA31 mA32 mA33 mA34

mA41 mA42 mA43 mA44




. (B.24)

The 4×4 matrix MC2→WB that represents the transform from Camera 2’s reference to Set B’s world reference
frame can be written as

MC2→WB =




mB11 mB12 mB13 mB14

mB21 mB22 mB23 mB24

mB31 mB32 mB33 mB34

mB41 mB42 mB43 mB44




. (B.25)

The transform from Camera 1’s reference frame to Camera 2’s reference frame is then is computed as fol-
lows:

MC2→C1 = (MWA→C1)(MWB→WA)(MC2→WB). (B.26)

This representation of pose is required for computing reprojection errors in the image planes of silhouettes
in Set A (since v represents a transformation from Set B to Set A).

It is useful to define

MC2→C1 =




r11A r12A r13A txA

r21A r22A r23A tyA

r31A r32A r33A tzA

0 0 0 1




=




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




, (B.27)

so that partial derivatives of more than one element of the pose matrices may be specified with a single
equation.

It is also useful to define
w = q1

2 +q2
2 +q3

2 +q4
2, (B.28)

since the expression q1
2 +q2

2 +q3
2 +q4

2 occurs frequently.
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The remaining equations required for populating the elements of J follow. (These were computed with the
aid of the Matlab Symbolic Toolbox.)
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∂ri jA

∂xt
=

∂ri jA

∂yt
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)
=

(
mA11 mA12 mA13

mA21 mA22 mA23

)
. (B.34)

The individual elements of J (see Equation B.3) are computed using the above equations together with the
chain rule as shown in the example of Equation B.4.
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Appendix C

Polyhedral Models of Stone Data Sets

This appendix shows pictures of the polyhedral models of stones used in this thesis. The polyhedral models
are ordered so that similar shapes are nearby. This is achieved using the following approach. Each link
between a stone and its four-neighbours is assigned a cost based on the EMD between caliper diameter
distributions of the polyhedron. A low-cost combination is computed by randomly selecting pairs of stones,
and swapping them if the swap results in a cost reduction. A simulated annealing [51] approach is used
so that there is also a slight probability that swaps will be carried out if the swap increases the cost. The
probability is controlled by a cooling schedule so that the probability is reduced as the algorithm progresses.
This approach allows the algorithm to escape local minima.

The polyhedra have their principal axes aligned with the x-, y- and z-axes, and are viewed from the (1, 1, 1)

viewing direction. This helps in visualising the shape of flat or elongated stones in which a large part of the
particle may or may not be visible when viewed from an unspecified direction.
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./figures/AppendixPolyhedral/GravelGrid22x13Page1.eps

Figure C.1: Refined visual hulls of the data set consisting of 220 pieces of gravel. Each visual hull is formed from 15 views of
the stone obtained by merging three runs of 5-view silhouette sets. The 5-view silhouette sets were captured using the mirror setup
described in Chapter 4.
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./figures/AppendixPolyhedral/KingGrid22x13Page1.eps

Figure C.2: Refined visual hulls of the data set consisting of 246 garnets. Each visual hull is formed from 30 views of the stone
obtained by merging five runs of 6-view silhouette sets. The 6-view silhouette sets were captured using the six-camera setup
described in Chapter 5.
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./figures/AppendixPolyhedral/QuietGrid30x20Page1.eps

Figure C.3: Refined visual hulls of a portion of the data set consisting of 1426 naturally-occurring (uncut) gemstones. Each visual
hull is formed from 60 views of the stone obtained by merging 10 runs of 6-view silhouette sets. The 6-view silhouette sets were
captured using the six-camera setup described in Chapter 5. (The other stones from the data set are illustrated on pages 223 and 224.)
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./figures/AppendixPolyhedral/QuietGrid30x20Page2.eps

Figure C.4: Refined visual hulls of a portion of the data set consisting of 1426 naturally-occurring (uncut) gemstones. Each visual
hull is formed from 60 views of the stone obtained by merging 10 runs of 6-view silhouette sets. The 6-view silhouette sets were
captured using the six-camera setup described in Chapter 5. (The other stones from the data set are illustrated on pages 222 and 224.)
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./figures/AppendixPolyhedral/QuietGrid30x20Page3.eps

Figure C.5: Refined visual hulls of a portion of the data set consisting of 1426 naturally-occurring (uncut) gemstones. Each visual
hull is formed from 60 views of the stone obtained by merging 10 runs of 6-view silhouette sets. The 6-view silhouette sets were
captured using the six-camera setup described in Chapter 5. (The other stones from the data set are illustrated on pages 222 and 223.)
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./figures/AppendixPolyhedral/SytheticNonconvexGrid2.eps

Figure C.6: Synthetic data set of 100 nonconvex stones. The data set is used to investigate matching in Chapter 7.
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./figures/AppendixPolyhedral/SynthEqualEigConv2.eps

Figure C.7: Synthetic data set of 200 convex stones. The data set is used to investigate matching in Chapter 7.
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./figures/AppendixPolyhedral/SieveGrid30x20Page1.eps

Figure C.8: Refined visual hulls of the data set consisting of 494 garnets used in a sieving experiment described in Chapter 10.
Each visual hull is formed from 90 views of the stone obtained by merging 15 runs of 6-view silhouette sets. The 6-view silhouette
sets were captured using the six-camera setup described in Chapter 5.
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